Advertisement

Statistics of Fields, the Yang-Baxter Equation, and the Theory of Knots and Links

  • Jürg Fröhlich
Part of the NATO ASI Series book series (NSSB, volume 185)

Abstract

In these notes we describe an analysis of the statistics problem in quantum field theory. It has been known for some time that in two space-time dimensions there is more to the problem of statistics of local fields than Bose- or Fermi statistics [1], In three-dimensional space-time, local quantum fields obey Bose- or Fermi statistics, but “extended particles”, coupled to the vacuum by fields localized on cones, may exhibit intermediate statistics, so called O-statistics [2].

Keywords

Braid Group Conformal Field Theory Reidemeister Move Dual Algebra Relativistic Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.F. Streater and A.S. Wightman,’TCT, Spin and Statistics and All That 9 Reading, Mass: Benjamin 1918. (This book contains many references to the early literature on solitons and statistics in two dimensions.) R.F. Streater and LP. Wilde, Nuclear Physics B 24, 561 (1970).Google Scholar
  2. 2.
    Y.S. Wu, Phys. Rev. Lett. 52, 2103 (1984); 53, HI (1984).Google Scholar
  3. 3a.
    J. Frohlich, Commun. Math. Phys. 47, 269 (1976).MathSciNetADSCrossRefGoogle Scholar
  4. 3b.
    Acta Phys. Austriaca, Suppl. XV, 133 (1976).Google Scholar
  5. 3c.
    J. Bellissard, J. Frohlich and B. Gidas, Commun. Math. Phys. 60, 37 (1978).MathSciNetADSCrossRefGoogle Scholar
  6. 3d.
    J. Frohlich, in “Invariant Wave Equations”, Berlin-Heidelberg-New York: Springer-Verlag, Lecture Notes in Physics 73, 1978.Google Scholar
  7. 4.
    J. Frohlich, in : “Recent Developments in Gauge Theories” (Cargese 1979). G.’t Hooft et al. (eds.), New York: Plenum Press, 1980.Google Scholar
  8. 5a.
    E.C. Marino and J.A. Swieca, Nucl. Phys. B170 [FS1],175 (1980).MathSciNetADSCrossRefGoogle Scholar
  9. 5b.
    E.C. Marino, B. Schroer and J.A. Swieca, Nucl. Phys. B200 [FS4],473 (1982).MathSciNetADSCrossRefGoogle Scholar
  10. 5c.
    R. Koberle and E. C. Marino, Phys. Lett. 126B, 475 (1983).MathSciNetADSGoogle Scholar
  11. 6.
    J. Frohlich and P.-A. Marchetti, “Bosonization, Topological Solitons and Fractional Charges in Two-Dimensional Quantum Field Theory” submitted to Commun. Math. Phys.. and Commun. Math. Phys. 112, 343-383 (1987)Google Scholar
  12. 7a.
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241, 333 (1984).MathSciNetADSCrossRefGoogle Scholar
  13. 7b.
    V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247, 83 (1984).MathSciNetADSCrossRefGoogle Scholar
  14. 8a.
    D. Friedan, E. Martinec and S. Shenker, Phys. Lett. B160, 55 (1985).MathSciNetADSGoogle Scholar
  15. 8b.
    D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B271, 93 (1986).MathSciNetADSGoogle Scholar
  16. 9a.
    V.G. Knizhnik, Phys. Lett. B160, 403 (1985).MathSciNetADSGoogle Scholar
  17. 9b.
    V.G. Knizhnik, Phys. Lett. B178, 21 (1986).MathSciNetADSGoogle Scholar
  18. 10.
    G. Segal, “The Definition of Pertubative Conformal Field Theory”, notes, 1987. J. Frohlich, unpublished notes, Bures-sur-Yvette, 1987.Google Scholar
  19. 11.
    V.F.R. Jones, Bull. Amer. Math. Soc. 12, 103 (1985); Notes on a Talk in Atiyah’s Seminar (1986); paper in preparation.Google Scholar
  20. 12.
    L. Kadanoffand H. Ceva, Phys. Rev. B 11, 3918 (1971).ADSGoogle Scholar
  21. 13a.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973).MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 13b.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 42, 281 (1975).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 13c.
    V. Glaser, Commun. Math. Phys. 37, 257 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 13d.
    J. Frohlich, K. Osterwalder and E. Seiler, Ann. Math. 118, 461 (1983).MathSciNetCrossRefGoogle Scholar
  25. 14.
    M. Sato, T. Miwa and M. Jimbo, Publ. RIMS, Kyoto University, 15. 871 (1979).Google Scholar
  26. 15.
    F. Wegner, J. Math. Phys. 12, 2259 (1971).MathSciNetADSCrossRefGoogle Scholar
  27. 16.
    K.G. Wilson, Phys. Rev. D 10, 2445 (1974).ADSGoogle Scholar
  28. 17.
    G.’t Hooft, Nucl. Phys. B 138, 1 (1978).ADSCrossRefGoogle Scholar
  29. 18.
    F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).MathSciNetADSCrossRefGoogle Scholar
  30. 19.
    J. Frohlich and P.-A. Marchetti, “Field Theory of Anyons and 0-Statistics”, to appear.Google Scholar
  31. 20.
    S. Doplicher, R. Haag and J. Roberts, Commun. Math. Phys. 23, 199 (1971); 35, 49 (1974). (See also ref. 39.)Google Scholar
  32. 21.
    J. Glimm and A. Jaffe, “Quantum Physics”(2nd edition), Berlin-Heidelberg-New York: Springer-Verlag, 1987.CrossRefGoogle Scholar
  33. 22.
    J. Imbrie, Commun. Math. Phys. 82, 261 (1981), 82, 305 (1981).MathSciNetADSCrossRefGoogle Scholar
  34. 23.
    R.F. Streater and A.S. Wightman, see ref. 1. R. “Jost,The General Theory of Quantized Fields”, Providence, R.I.: Publ. Amer. Math. Soc., 1965.Google Scholar
  35. 24.
    T. Kohno, Nagoya Math. J. 92, 21 (1983); Invent. Math. 82, 57 (1985).Google Scholar
  36. 25.
    T. Kohno, “Linear Representations of Braid Groups and Classical Yang-Baxter Equations”, to appear in “Contemporary Mathematics: Artin’s Braid Group”, Santa Cruz, 1987.Google Scholar
  37. 26.
    A.A. Belavin and V.G. Drinfel’d, Funct.Anal.Appl. 16, 1 (1982).MathSciNetCrossRefGoogle Scholar
  38. 27.
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984).MathSciNetADSCrossRefGoogle Scholar
  39. 28.
    G. Segal, ref. 10.Google Scholar
  40. 29.
    V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B 247, 83 (1984).MathSciNetADSCrossRefGoogle Scholar
  41. 30.
    B. Schroer, Lecture Notes, Cargese 1987, to appear in the proceedings; and refs. given there.Google Scholar
  42. 31.
    E. Witten, Commun. Math. Phys. 92, 455 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 32.
    A.M. Polyakov and P.B. Wiegmann, Phys. Lett. B 131, 121 (1983).MathSciNetADSGoogle Scholar
  44. 33.
    A. Tsuchiya and Y. Kanie, Lett. Math. Phys. 13, 303 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 34.
    V.F.R. Jones, Invent. Math. 72, 1983.Google Scholar
  46. 35.
    V.F.R. Jones, unpubl. seminar notes, and paper in preparation.Google Scholar
  47. 36.
    V.G. Turaev, “The Yang-Baxter Equation and Invariants of Links ”,LOMI Preprint E-3-1987.Google Scholar
  48. 37.
    L.H. Kauffman, “Statistical Mechanics and the Jones Polynomial” Preprint, University of Illinois, 1987.Google Scholar
  49. 38.
    V. Pasquier, Preprints, Saclay SPh T/87-014, SPh T/ 87-62.Google Scholar
  50. 39.
    D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  1. 1.Theoretical PhysicsETH-HönggerbergZürichGermany

Personalised recommendations