Hydrogen Transfer in Mixed Cultures of Anaerobic Bacteria and Fungi with Methanobrevibacter Smithii

Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


The processes involved in the reduction of the oxides of sulphur, nitrogen and carbon compete for electrons. The free-energy changes involved, and the nature of the environment influence the outcome of this competition. Although methanogenesis is normally seen as the ultimate electron acceptor in anaerobic fermentations, methanogenesis may be competitively inhibited under some conditions, for example in anaerobic sediments containing high concentrations of sulphates (Widdel, 1986), or when methanogenic faecal slurries are supplemented with nitrates (Allison & Macfarlane, 1988).


Axenic Culture Clostridium Thermocellum Succinate Production Rumen Bacterium Anaerobic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, C, and Macfarlane, G.T., 1988, Effect of nitrate on methane production and fermentation by slurries of human faecal bacteria, J. Gen. Microbiol., 134: 1397–1405.PubMedGoogle Scholar
  2. Allison, M. J., Robinson, I. M., and Baetz, A. L., 1979, Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonasand Bacteriodessp., J. Bacteriol, 140: 980–986.PubMedGoogle Scholar
  3. Bauchop, T., 1971, Mechanism of hydrogen formation in Trichomonas foetus, J. Gen. Microbiol, 68: 27–33.PubMedGoogle Scholar
  4. Bauchop, T., and Mountfort, D. O., 1981, Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens, Appl. Environ. Microbiol, 42, 1103–1110.PubMedGoogle Scholar
  5. Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol, 55, 1735–1741.PubMedGoogle Scholar
  6. Carroll, E. J., and Hungate, R. E., 1957, Formate dissimilation and methane production in bovine rumen contents, Arch. Biochem. Biophys., 56: 525–536.CrossRefGoogle Scholar
  7. Chen, M., and Wolin, M. J., 1977, Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium, Appl. Environ. Microbiol, 34: 756–759.PubMedGoogle Scholar
  8. Chen, M., and Wolin, M.J., 1979, Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria, Appl. Environ. Microbiol. 38: 72–77.PubMedGoogle Scholar
  9. Fiebig, K., and Gottschalk, G., 1983, Methanogenesis from choline by a co-culture of Desulfovibriosp. and Methanosarcina barkeri, Appl. Environ. Microbiol, 45: 161–168.PubMedGoogle Scholar
  10. Gibson, G. R., Macfarlane, G. T., and Cummings, J. H., 1988, Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut, J. Appl. Bacteriol, 65: 103–111.PubMedGoogle Scholar
  11. Gottschalk, G., and Andreesen, J. R., 1979, Energy metabolism in anaerobes, in “Microbial Biochemistry,” J. R. Quayle ed., Int. Revs. Biochem., 21: Williams and Wilkins, Baltimore.Google Scholar
  12. Hammes, W. P., Winter, J., and Kandler, O., 1979, The sensitivity of the pseudomurein-containing genus Methanobacteriumto inhibitors of murein synthesis, Archiv. for Microbiol, 123: 275–279.CrossRefGoogle Scholar
  13. Hillman, K., Lloyd, D., and Williams, A. G., 1988, Interactions between the methanogen Methanosarcina barkeriand rumen holotrich ciliate protozoa, Lett. Appl. Microbiol, 7: 49–53.CrossRefGoogle Scholar
  14. Holdeman, L. V., Kelley, R. W., and Moore, W. E. C, 1986, Bacteroidaceae, in “Bergey’s Manual of Systematic Bacteriology,” N. R. Kreig and J. G. Holt, eds., Williams and Wilkins, Baltimore.Google Scholar
  15. Hungate, R. E., 1975, The rumen microbial ecosystem, Ann. Rev. Ecol. Syst., 6: 39–66.CrossRefGoogle Scholar
  16. Iannotti, E. L., Kafkewitz, D., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albusgrown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2, J. Bacteriol., 114: 1231–1240.PubMedGoogle Scholar
  17. Joblin, K., Campbell, G. P., Richardson, A. J., and Stewart, C. S., 1989, Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens, Lett. Appl. Microbiol, (in the press).Google Scholar
  18. Latham, M. J., and Legakis, N. J., 1976, Cultural factors influencing the utilisation or production of acetate by Butyrivibrio fibrisolvens, J. Gen. Microbiol, 94: 380–388.Google Scholar
  19. Latham, M. J., and Wolin, M. J., 1977, Fermentation of cellulose by Ruminococcus flavefaciensin the presence and absence of Methanobacterium ruminantium, Appl. Environ. Microbiol, 34: 297–301.PubMedGoogle Scholar
  20. Lovley, D. R., Greening, R. C, and Ferry, J. G., 1984, Rapidly growing rumen methanogenic organism that synthesises coenzyme M and has a high affinity for formate, Appl. Environ. Microbiol, 48: 81–87.PubMedGoogle Scholar
  21. Lowe, S. E., Theodorou, M. K., and Trinci, A. P. J., 1987, Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development, Appl. Environ. Microbiol, 53: 1210–1215.PubMedGoogle Scholar
  22. Macy, J., Probst, I., and Gottschalk, G., 1975, Evidence for cytochrome involvement in fumarate reduction and adenosine 5’ triphosphate synthesis by Bacteroides fragilisgrown in the presence of haemin, J. Bacteriol, 123: 436–442.PubMedGoogle Scholar
  23. Miller, T. L., 1978, The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes, Arch. Microbiol, 117: 145–152.PubMedCrossRefGoogle Scholar
  24. Miller, T. L., and Wolin, M. J., 1973, Formation of hydrogen and formate by Ruminococcus albus, J. Bacteriol, 116: 836–846.PubMedGoogle Scholar
  25. Miller, T. L., and Wolin, M. J., 1979, Fermentations by saccharolytic intestinal bacteria, Am. J. Clin. Nutr., 164–172.Google Scholar
  26. Miller, T. L., and Wolin, M. J., 1981, Fermentation by the human large intestine microbial community in an in vitrosemicontinuous culture system, Appl. Environ. Microbiol, 42: 400–407.Google Scholar
  27. Miller, T. L. and Wolin, M. J., 1985, Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen, Arch. Microbiol, 141: 116–122.PubMedCrossRefGoogle Scholar
  28. Miller, T. L., and Wolin, M. J., 1986, Methanogens in human and animal intestinal tracts, Syst. Appi Microbiol, 7: 223–229.Google Scholar
  29. Miller, T. L., Wolin, M. J., and Kusel, E. A., 1986, Isolation and characterisation of methanogens from animal feces, Syst. Appl. Microbiol, 8: 234–238.Google Scholar
  30. Miller, T. L., Wolin, M. J., Hongxue, Z., and Bryant, M.P., 1986, Characteristics of methanogens isolated from bovine rumen, Appl. Environ. Microbiol, 51: 201–202.PubMedGoogle Scholar
  31. Miller, T. L., Wolin, M. J., Conway de Macario, E., and Macario, A. J. L., 1982, Isolation of Methanobrevibacter smithiifrom human feces, Appl. Environ. Microbiol, 43, 227–232.PubMedGoogle Scholar
  32. Oppermann, R. A., Nelson, W. O., and Brown, R. E., 1957, In vitro studies on methanogenic rumen bacteria, J. Dairy Sci., 40: 779–788.CrossRefGoogle Scholar
  33. Patterson, J. A., and Hespell, R. B., 1979, Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Curr. Microbiol, 3: 79–83.CrossRefGoogle Scholar
  34. Paynter, M. J. B., and Hungate, R. E., 1968, Characterisation of Methanobacterium mobilissp. nov., isolated from the bovine rumen, J. Bacteriol, 95: 1943–1951.PubMedGoogle Scholar
  35. Prins, R. A., 1971, Isolation, culture, and fermentation characteristics of Selenomonas ruminantiumvar. bryantivar. n. from the rumen of sheep, J. Bacteriol, 105: 820–825.PubMedGoogle Scholar
  36. Prins, R. A., and Van Hoven, W., 1977, Carbohydrate fermentation by the rumen ciliate Isotricha prostoma, Protistol, 13: 599–606.Google Scholar
  37. Prins, R. A., Van Vught, F., Hungate, R. E., and Van Vorstenbosch, C. J. A. H. V., 1972, A comparison of strains of Eubacteriwn cellulosolvensfrom the rumen, Ant. Van Leeuwen., 38: 1–11.CrossRefGoogle Scholar
  38. Roustan, J. L., Touzel, J. P., Prensier, G., Dobourguier, H. C, and Albagnac, G., 1986, Evidence for a lytic phage for Methanothrixsp., in “Biology of Anaerobic Bacteria,” H. C. Dubourguier, ed., Elsevier, Amsterdam.Google Scholar
  39. Russell, J. B., 1987, A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on flux and protonmotive force, J. Anim. Sci., 64: 1519–1525.PubMedGoogle Scholar
  40. Salyers, A. A., 1984, Bacteroides of the human lower intestinal tract, Ann. Rev. Microbiol, 38: 293–313.Google Scholar
  41. Scheifinger, C. C, Linehan, B., and Wolin, M. J., 1975, H2 production by Selenomonas ruminantiumin the absence and presence of methanogenic bacteria. Appl. Microbiol, 29, 480–483.PubMedGoogle Scholar
  42. Smith, P. H, and Hungate, R. E., 1958, Isolation and characterisation of Methanobacterium ruminantiumn. sp., J. Bacteriol, 75: 713–718.PubMedGoogle Scholar
  43. Stewart, C. S., and Bryant, M. P., 1988, The Rumen Bacteria, in “The Rumen Microbial Ecosystem,” P. N. Hobson, ed., Elsevier Applied Science, London.Google Scholar
  44. Stewart, C. S., and Richardson, A. J., 1989, Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria, J. Appl. Bacteriol, 66: 85–93.PubMedGoogle Scholar
  45. Thauer, R. K., and Kroger, A., 1984, Energy metabolism of two rumen bacteria with special reference to growth efficiency, in “Herbivore Nutrition in the Tropics and Sub-Tropics,” F. M. C. Gilchrist and R.I. Mackie, eds., The Science Press, South Africa.Google Scholar
  46. Van Hoven, W., and Prins, R. A.,1977, Carbohydrate fermentation by the rumen citiate Dasytricha ruminantium. Protistol, 13: 599–606.Google Scholar
  47. Vogels, G. D., Hoppe, W. F., and Stumm, C. K., 1980, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol, 40: 608–612.PubMedGoogle Scholar
  48. Weimer, P.J., and Zeikus, J. G., 1977, Fermentation of cellulose and cellobiose by Clostridium thermocellumin the absence and presence of Methanobacterium thermoautotrophicum, Appl. Environ. Microbiol, 33: 289–297.PubMedGoogle Scholar
  49. Widdel, F., 1986, Sulphate reducing bacteria and their ecological niches, in “Anaerobic Bacteria in Habitats Other Than Man,” E. M. Barnes and G. C. Mead, eds., Blackwell, Oxford.Google Scholar
  50. Wolin, M. J., 1982, Hydrogen transfer in microbial communities, in “Microbial Interactions and Communities,”A. T. Bull and J. H. Slater, eds., Academic Press, London.Google Scholar
  51. Wolin, M. J. and Miller, T., 1983, Carbohydrate fermentation, in “Human Intestinal Microflora in Health and Disease,” D. J. Hentges, ed., Academic Press, London.Google Scholar
  52. Wolin, M. J., and Miller, T. L., 1988, Microbe-microbe interactions, in “The Rumen Microbial Ecosystem” P.N. Hobson, ed., Elsevier Applied Science, London.Google Scholar
  53. Wood, T. M., Wilson, C. A., McCrae, S. I., and Joblin, K. N., 1986, A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis, FEMS Microbiol Lett., 34: 37–40.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  1. 1.Rowett Research InstituteAberdeenUK

Personalised recommendations