Anti-Inflammatory Systems in Human Milk

  • Armond S. Goldman
  • Randall M. Goldblum
  • Lars Å. Hanson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 262)


Mucosal surfaces of the alimentary tract and respiratory system are exposed to a host of deleterious agents, many of which are microorganisms and their products. The tissues of these organ-systems are defended by an array of resistance factors including the mucus barrier, lysozyme, lactoferrin, and antibodies principally of the secretory IgA isotype (Goldman et al., 1985; Udall, 1985). During early life, however, these immunologic mechanisms are poorly developed and the infant is therefore more vulnerable to the effects of microbial pathogens, foreign antigens, or inflammatory substances that are generated by the activation of elements of the next line of defense - the complement system, coagulation factors, certain isotypes of immunoglobulins (IgG, IgM, and IgE), local or elicited leukocytes, (mast cells, basophils, macrophages, neutrophils, NK cells, T cells) and a wide variety of mediators.


Human Milk Vasoactive Intestinal Peptide Alimentary Tract Bovine Colostrum Human Colostrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B., Porras, O., Hanson, L. Å., Svanborg-Eden, C., and Leffler, H., 1985, Nonantibody containing fractions of breast milk inhibit epithelial attachment of Streptococcus pneumoniae and Haemophilus influenzae, Lancet, I: 643.CrossRefGoogle Scholar
  2. Aruoma, O. I., and Halliwell, B., 1987, Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?, Biochem. J., 241: 273.Google Scholar
  3. Baldwin, D. A., Jenny, E. R., and Aisen, P., 1984, The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide, J. Biol. Chem., 159: 13391.Google Scholar
  4. Ballow, M., Fang, F., Good, R. A., Day, N. K., 1974, Developmental aspects of complement components and C3 proactivator (properdin factor B) in human colostrum, Clin. Exp. Immunol., 18: 257.Google Scholar
  5. Bendich, A., D’Apolito, P., Gabriel, E., and Machlin, L. J., 1983, Modulation of the immune system function of guinea pigs by dietary vitamins E and C following exposure to 100% O2, Fed. Proc., 42: 923.Google Scholar
  6. Bendich, A., D’Apolito, P., Gabriel, E., and Machlin, L. J., 1984, Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens, J. Nutr., 114: 1588.Google Scholar
  7. Bendich, A., Gabriel, E., and Machlin, L. J., 1986, Dietary vitamin E requirement for optimum immune responses in the rat, J. Nutr., 116: 675.Google Scholar
  8. Blanc, B., 1981, Biochemical aspects of human milk - comparison with bovine milk, World Rev. Nutr. Diet., 36: 1.Google Scholar
  9. Brines, R. D., and Brock, J. H., 1983, The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron binding properties of lactoferrin in human milk and bovine colostrum, Biochem. Biophys., 759: 229.Google Scholar
  10. Buescher, E. S., and McIlheran, S. M., 1988, Further characterization of anti-oxidant components in human colostrum, Pediatr. Res., 470A: 1613 (abstract).Google Scholar
  11. Burton, G. W., and Ingold, K. U., 1984, ß-Carotene: An unusual type of lipid anti-oxidant, Science, 224: 569.CrossRefGoogle Scholar
  12. Carpenter, G., 1980, Epidermal growth factor is a major growth-promoting agent in human milk, Science, 210: 198.CrossRefGoogle Scholar
  13. Chapell, J. E., Francis, T., and Clandinin, M. T., 1985, Vitamin A and E content of human milk at early stages of lactation, Early Hum. Dev., 11: 157.CrossRefGoogle Scholar
  14. Cunningham, A. S., 1981, Breast-feeding and morbidity in industrialized countries: an update, in: “Advances in International Maternal and Child Health,” D. B. Jelliffe, E. F. P. Jelliffe, eds., Oxford University Press, New York.Google Scholar
  15. Davis, C. P., Houston, C. W., Fader, R. C., Goldblum, R. M., Weaver, E. A., and Goldman, A. S., 1982, Immunoglobulin A and secretory immunglobulin A antibodies to purified type 1 Klebsiella pneumoniae pili in human colostrum, Infect. Immun., 38: 496.Google Scholar
  16. Duffy, L. C., Riepenhoff-Talty, M., Byers, T. E., LaScolea, L. J., Zielezny, M. A., Dryja, D. M., and Ogra, P. L., 1986, Modulation of rotavirus enteritis during breast-feeding. Implication on alteration in the intestinal bacterial flora, Am. J. Dis. Child., 140: 1164.Google Scholar
  17. Garza, C., Johnson, C. A., Harrist, R., and Nichols, B. L., 1982, Effects of methods of collection and storage of nutrients in human milk, Early Hum. Dev., 6: 295.CrossRefGoogle Scholar
  18. Goldman, A. S., Garza, C., Nichols, B. L., and Goldblum, R. M., 1982, Immunologic factors in human milk during the first year of lactation, J. Pediatr., 100: 563.CrossRefGoogle Scholar
  19. Goldman, A. S., and Goldblum, R. M., 1985, Protective properties of human milk, in: “Nutrition in Pediatrics - Basic Sciences and Clinical Application,” W. A. Walker and J. B. Watkins, eds., Little, Brown and Co., Boston.Google Scholar
  20. Goldman, A. S., and Goldblum, R. M., 1986, Immunoglobulins in human milk, in: “Natural Antimicrobial Systems,” R. G. Board, ed., Bath University Press, Bath, U.K. and International Dairy Federation, Brussels.Google Scholar
  21. Goldman, A. S., and Goldblum, R. M., 1989, Immunologic system in human milk: characteristics and effects, in: “Textbook of Gastroenterology and Nutrition in Early Childhood,” 2nd Edition, E. Lebenthal, ed., Raven Press, New York.Google Scholar
  22. Goldman, A. S., Ham Pong, A. J., and Goldblum, R. M., 1985, Host defenses: Development and maternal contributions, in: “Advances in Pediatrics,” L. A. Barness, ed., Yearbook Medical Publ., Chicago.Google Scholar
  23. Goldman, A. S., Thorpe, L. W., Goldblum, R. M., and Hanson, L. A., 1986, Antiinflammatory properties of human milk, Acta Paediatr. Scand., 75: 689.CrossRefGoogle Scholar
  24. Gordon, J. E., Chitkara, I. D., and Wyon, J. B., 1963, Weaning diarrhea, Am. J. Med. Sci., 245: 345.Google Scholar
  25. Grulee, C. G., Sanford, H. N., and Schwartz, H., 1935, Breast and artificially-fed infants. A study of the age incidence in the morbidity and mortality in twenty thousand cases, JAMA, 104: 1986.Google Scholar
  26. Gutteridge, J. M. C., Patterson, S. K., Segal, A. W., and Halliwell, B., 1981, Inhibition of lipid peroxidation by the iron-binding protein lactoferrin, Biochem. J., 199: 259.Google Scholar
  27. Hall, R. A., and Widdowson, E. M., 1979, Response of the organs of rabbits to feeding during the first days after birth, Biol. Neonate., 35: 131.CrossRefGoogle Scholar
  28. Hanson, L. Å., Ahlstedt, S., Carlsson, B., and Fallstrom, S. P., 1977, Secretory IgA antibodies against cow’s milk proteins in human milk and their possible effect in mixed feedings, Int. Arch. Allergy Appl. Immunol., 54: 457.CrossRefGoogle Scholar
  29. Harmatz, P., Hanson, D. G., Brown, M., Kleinman, R. E., Walker, W. A., and Block, K. J., 1986, Transfer of maternal food proteins in milk, in: “Human Lactation. III. The Effects of Human Milk upon the Recipient Infant,” A. S. Goldman, S. A. Atkinson, and L. Å. Hanson, eds., Plenum Press, New York and London.Google Scholar
  30. Heird, W. C., and Hanson, I. H., 1977, Effect of colostrum on growth of intestinal mucosa, Pediatr. Res., 11: 406 (abstract).CrossRefGoogle Scholar
  31. Heydicky, G. V., 1963, Further investigations on the enzymes in human milk, Pediatrics, 31: 1019.Google Scholar
  32. Holmgren, J., Hanson, L. Å., Carlsson, B., Lindblad, B. S., and Rahimtoola, J., 1976, Neutralizing antibodies against E. coli and V. cholerae entero-toxin in human milk from a developing country, Scand. J. Immunol., 5: 867.CrossRefGoogle Scholar
  33. Holmgren, J., Svennerhold, A-M., Lindblad, M., Strecker, G., 1987, Inhibition of bacterial adhesion and toxin binding by glycoconjugate and oligosaccharide receptor analogues in human milk, in: “Human Lactation. III: The Effects of Human Milk Upon the Recipient Infant,” A. S. Goldman, S. A. Atkinson, and L. A. Hanson, eds, Plenum Press, New York and London.Google Scholar
  34. Horie, N., Okamoto, U., and Togawa, C., 1982, Studies on the plasminogen activating system in human milk. VI. Differences in properties between milk activator and glandular kallikrien, Acta Haematol., 45: 1099.Google Scholar
  35. Horne, C. H. W., Armstrong, S. S., and Thomson, A. W., 1983, Detection of pregnancy associated a2-glycoprotein (a2-PAG), in IgA producing plasma cells and in body secretions, Clin. Exp. Immunol., 51: 631.Google Scholar
  36. Jansson, L., Akesson, B., and Holmberg, I., 1981, Vitamin E and fatty acid composition of human milk, Am. J. Clin. Nutr., 34: 8.Google Scholar
  37. Kidwell, W. R., Salomon, D. S., and Mohanam, S., 1987, Production of growth factors by normal human mammary cells in culture, in: “Human Lactation. III. The Effects of Human Milk Upon the Recipient Infant,” A. S. Goldman, S. A. Atkinson, and L. Å. Hanson, eds., Plenum Press, New York and London.Google Scholar
  38. Kijlstra, A., and Jeruissen, S. H. M., 1982, Modulation of classical C3 convertase of complement by tear lactoferrin, Immunology., 47: 263.Google Scholar
  39. Kilshaw, P. J., and Cant, A. J., 1984, The passage of maternal dietary proteins into human breast milk, Int. Arch. Allergy Appl. Immunol., 75: 8.CrossRefGoogle Scholar
  40. Klagsbrun, M., 1978, Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts, Proc. Natl. Acad. Sci USA, 75: 5057.CrossRefGoogle Scholar
  41. Kolsto Otnaess, A-B., Laegreid, A., and Ertresvag, K., 1983, Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk, Infect. Immun., 40: 563.Google Scholar
  42. Kulangara, A. C., 1980, The demonstration of ingested wheat antigens in human breast milk, IRCS Med. Sci., (Biochem) 8: (Part 1) 19.Google Scholar
  43. Lindberg, T., Ohlsson, K., and Westrom, B., 1982, Protease inhibitors and their relations to protease activity in human milk, Pediatr. Res., 16: 479.CrossRefGoogle Scholar
  44. Lindh, E., 1975, Increased resistance of immunoglobulin dimers to proteolytic degradation after binding of secretory component, J. Immunol., 114: 284.Google Scholar
  45. Mata, L. J., and Urrutia, J. J., 1971, Intestinal colonization of breast-fed children in a rural area of low socioeconomic level, Ann. NY. Acad. Sci., 176: 93.CrossRefGoogle Scholar
  46. Mata, L. J., Urrutia, J. J., Garcia, B., Fernandez, R., and Behar, M., 1969, Shigella infection in breast-fed Guatemalan Indian neonates, Am. J. Dis. Child., 117: 142.Google Scholar
  47. Mata, L. J., Urrutia, J. J., and Gordon, J. E., Diarrheal disease in cohort of Guatemalan village children observed from birth to age two years, Trop. Geogr. Med., 29: 247.Google Scholar
  48. Moran, R., Vaughn, R., and Orth, D. N., 1982, Epidermal growth factor (EGF) concentrations and daily production in breast milk during six weeks post delivery in mothers of premature infants, Pediatr. Res., 16: 172 (abstract).CrossRefGoogle Scholar
  49. Niki, E., Tsuchiya, J., Tanimura, R., and Kamiya, Y., 1982, Regeneration of vitamin E from alpha-chromanoxyl radical by glutathione and vitamin C, Chem. Lett., 789.Google Scholar
  50. Ogra, S. S., and Ogra, P. L., 1978, Immunologic aspects of human colostrum and milk. II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation, J. Pediatr., 2: 550.Google Scholar
  51. Ostrea, E. A., Jr., Balun, J. E., Winkler, R., and Porter, T., 1986, Influence of breast-feeding on the restoration of the low serum concentration of vitamin E and ß-carotene in the newborn infant, Am. J. Obstet. Gynecol., 154: 1014.Google Scholar
  52. Pickering, L. K., Cleary, T. G., Kohl, S., and Getz, S., 1980, Polymorphonuclear leukocytes of human colostrum. I. Oxidative metabolism, J. Infect. Dis., 142: 685.CrossRefGoogle Scholar
  53. Rassin, D. K., Sturman, J. A., and Gaull, G. E., 1978, Taurine and other free amino acids in milk of man and other mammals, Early Hum. Dev., 2: 1.CrossRefGoogle Scholar
  54. Schanler, R. J., Goldblum, R. M., Garza, C., and Goldman, A. S., 1986, Enhanced fecal excretion of secreted immune factors in very low birth weight infants fed fortified human milk, Pediatr. Res., 20: 711.CrossRefGoogle Scholar
  55. Schwartz, S. M., and Heird, W. C., 1981, Further studies of colostrum-stimulated enteric mucosal growth, Pediatr. Res., 15: 546 (abstract).Google Scholar
  56. Spik, G., Brunet, B., Mazurier-Dehaine, C., Fontaine, F., and Montreuil, J., 1982, Characterization and properties of the human and bovine lactotransferrin extracted from the faeces of newborn infants, Acta Paediatr. Scand., 71: 979.CrossRefGoogle Scholar
  57. Stuart, C. A., Twiselton, R., Nicholas, M. K., and Hide, D. W., 1984, Passage of cow’s milk protein in breast milk, Clin. Allergy., 14: 533.CrossRefGoogle Scholar
  58. Smith, C. W., and Goldman, A. S., 1968, The cells of human colostrum. In vitro studies of morphology and function, Pediatr. Res., 2: 103.CrossRefGoogle Scholar
  59. Stoliar, O. A., Pelley, R. P., Kaniecki-Green, E., Klaus, M. H., and Carpenter, C. C., 1976, Secretory IgA against enterotoxins in breast milk, Lancet, I: 1258.CrossRefGoogle Scholar
  60. Tengerdy, R. P., Mathias, M. M., and Nockels, C. F., 1981, Vitamin E, immunity and disease resistance, in: “Diet and Resistance to Disease,” M. Phillips and A. Baetz, eds., Plenum Press, New York.Google Scholar
  61. Thorpe, L. W., Rudloff, H. E., and Goldman, A. S., 1986, The decreased response of human milk leukocytes to chemoattractant peptides, Pediatr. Res., 20: 373.CrossRefGoogle Scholar
  62. Udall, J. N., 1985, Immunologic aspects of gut function, in: “Nutrition in Pediatrics. Basic Science and Clinical Application,” W. A. Walker and J. B. Watkins, eds., Little, Brown, and Company, Boston/Toronto.Google Scholar
  63. Underdown, B. J., Knight, A., and Papsin, F. R., 1976, The relative paucity of IgE in human milk, J. Immunol., 116: 1435.Google Scholar
  64. Weissmann, G., Smolen, J. E., and Korchak, H., 1980, Prostaglandins and inflammation: Receptor/cyclase coupling as an explanation of why PGEs and PGI2 inhibit function of inflammatory cells, in: “Advances in Prostaglandin and Thomboxane Research,” B. Samuelsson, P. W. Ramwell, and R. Paoletti, eds., Raven Press, New York.Google Scholar
  65. Werner, H., Koch, Y., Fridkin, M., Fahrenkrug, J., and Gozes, I., 1985, High levels of vasoactive intestinal peptide in human milk, Biochem. Biophys. Res. Commun., 133: 228.CrossRefGoogle Scholar
  66. Widdowson, E. M, Colombo, V. E., and Artavanis, C. A., 1976, Changes in the organs of pigs in response to feeding for the first 24 hours after birth. II. The digestive tract, Biol. Neonate, 28: 272.CrossRefGoogle Scholar
  67. Winterbourn, C. C., 1983, Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent, Biochem. J., 210: 15.Google Scholar
  68. Woodbury, R. M., 1922, The relation between breast and artificial feeding and infant mortality, Am. J. Hyg., 2: 668.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Armond S. Goldman
    • 1
    • 2
  • Randall M. Goldblum
    • 1
    • 2
  • Lars Å. Hanson
    • 1
    • 2
  1. 1.The University of Texas Medical BranchGalvestonUSA
  2. 2.University of GoteborgGoteborgSweden

Personalised recommendations