Our knowledge of the energetics of avian reproduction has increased dramatically since Ricklefs (1974) summarized the literature on the subject and attempted to structure existing descriptive information into an evolutionary context. So many studies now exist on avian reproduction that time and space limitations for this chapter required some critical decisions. I chose to leave out male reproductive energetics in hopes that some other person will soon undertake a review of that important subject. Furthermore, space availability precluded mention of many important studies in the area of female reproduction, and I apologize to those whose work is not cited herein. The goal of this chapter is to use the nutrient and energetic contents of avian eggs as background for understanding how various factors affect the accumulation and packaging of nutrients both in individual eggs and in clutches and how nutrient limitations affect reproduction. This chapter is therefore directed primarily at the physiological and biochemical level of avian reproduction, but these topics cannot be treated in isolation from ecological and evolutionary considerations. Therefore, I tried to link the energetics and nutritional aspects of avian reproduction to ecological and evolutionary theory where applicable, but no attempts were made to resolve current conflicts in these latter areas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alisauskas, R. T. 1986. Variation in the composition of the eggs and chicks of American Coots. Condor 88:84–90.Google Scholar
  2. Alisauskas, R. T. and C. D. Ankney. 1985. Nutrient reserves and the energetics of reproduction in American Coots. Auk 102:133–144.Google Scholar
  3. Amundsen, T. and T. Slagsvold. 1991. Hatching asynchrony: facilitating adaptive or maladaptive brood reduction? In Acta XX Congressus Internationalis Ornithologici, ed. B. Bell et al., pp. 1707–1719. New Zealand Ornithological Congress Trust Board, Wellington, N.Z.Google Scholar
  4. Amundsen, T. and J. N. Stokland. 1990. Egg size and parental quality influence nestling growth in the Shag. Auk 107:410–413.Google Scholar
  5. Ankney, C. D. 1980. Egg weight, survival, and growth of Lesser Snow Goose goslings. J. Wildl. Manage. 44:174–182.Google Scholar
  6. Ankney, C. D. and R. T. Alisauskas. 1991. The use of nutrient reserves by breeding waterfowl. In Acta XX Congressus Internationalis Ornithologici, ed. B. Bell et al., pp. 2170–2176. New Zealand Ornithological Congress Trust Board, Wellington, N.Z.Google Scholar
  7. Ankney, C. D. and A. R. Bisset. 1976. An explanation of egg-weight variation in the Lesser Snow Goose. J. Wildl Manage. 40:729–734.Google Scholar
  8. Ankney, C. D. and S. Johnson. 1985. Variation in weight and composition of Brown-headed Cowbird eggs. Condor 87:296–299.Google Scholar
  9. Ar, A. and Y. Yom-Tov. 1978. The evolution of parental care in birds. Evolution 32: 655–669.Google Scholar
  10. Arcese, R and J. N. M. Smith. 1988. Effects of population density and supplemental food on reproduction in Song Sparrows. J. Anim. Ecol. 57:119–136.Google Scholar
  11. Arnold, T. W. 1989. Variation in size and composition of Horned and Pied-billed Grebe eggs. Condor 91:987–989.Google Scholar
  12. Arnold, T. W. 1991. Intraclutch variation in egg size of American Coots. Condor 93:19–27.Google Scholar
  13. Arnold, T. W., R. T. Alisauskas, and C. D. Ankney. 1991. Egg composition of American Coots in relation to habitat, year, laying date, clutch size, and supplemental feeding. Auk 108:532–547.Google Scholar
  14. Astheimer, L. B. 1985. Long laying intervals: A possible mechanism and its implication. Auk 102:401–409.Google Scholar
  15. Astheimer, L. B. and C. R. Grau. 1985. The timing and energetic consequences of egg formation in the Adelie Penguin. Condor 87:256–268.Google Scholar
  16. Bacon, P. J. and M. D. Mountford. 1990. The effects of genotype and yearly variations in the egg volumes of the Mute Swan (Cygnus olor). Wildfowl 41:7–12.Google Scholar
  17. Bancroft, G. T. 1984. Patterns of variation in size of Boat-tailed Grackle eggs. Ibis 126:496–509.Google Scholar
  18. Bancroft, G. T. 1985. Nutrient content of eggs and the energetics of clutch formation in the Boat-tailed Grackle. Auk 102:43–48.Google Scholar
  19. Barry, T. W. 1962. Effect of late seasons on Atlantic Brant reproduction. J. Wildl. Manage. 26:19–26.Google Scholar
  20. Baumgartner, S., D. J. Brown, E. Salevsky, and R. M. Leach. 1978. Copper deficiency in the laying hen. J. Nutr. 108:804–811.PubMedGoogle Scholar
  21. Birkhead, T. R. and D. N. Nettleship. 1984. Egg size, composition and offspring quality in some Alcidae (Aves: Charadriiformes). J. Zool. Lond. 202:177–194.Google Scholar
  22. Board, R. G. and R. Fuller. 1974. Non-specific antimicrobial defenses of the avian egg, embryo and neonate. Biol. Rev. 49:15–49.PubMedGoogle Scholar
  23. Boutin, S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can. J. Zool. 68:203–220.Google Scholar
  24. Brockelman, W. Y. 1975. Competition, the fitness of offspring, and optimal clutch size. Am. Nat. 109:677–699.Google Scholar
  25. Bryant, D. M. 1975. Breeding biology of House Martins (Delichon urbica) in relation to aerial insect abundance. Ardea 68:91–102.Google Scholar
  26. Bryant, D. M. 1978. Establishment of weight hierarchies in the broods of House Martins Delichon urbica. Ibis 120:16–26.Google Scholar
  27. Burley, R. W. and D. V Vadehra. 1989. The Avian Egg: Chemistry and Biology. John Wiley- Interscience, New York.Google Scholar
  28. Calder, W. A. 1978. The Kiwi. Sci. Am. 239:132–142.Google Scholar
  29. Calder, W. A. 1984. Size, Function and Life History. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  30. Carey, C. 1983. Structure and function of avian eggs. In Current Ornithology, vol. 1, ed. R. F. Johnston, pp. 69–103. Plenum Press, New York.Google Scholar
  31. Carey, C., S. D. Garber, E. L. Thompson, and F. C. James. 1983. Avian reproduction over an altitudinal gradient: II. Physical characteristics and water loss of eggs. Physiol. Zool. 56:340–352.Google Scholar
  32. Carey, C. and M. L. Morton. 1976. Aspects of circulatory physiology of montane and lowland birds. Comp. Biochem. Physiol. 54A:61–74.Google Scholar
  33. Carey, C., H. Rahn, and P. Parisi. 1980. Calories, water, lipid and yolk in avian eggs. Condor 82:335–343.Google Scholar
  34. Christie, W. W. 1982. Lipid Analysis, 2nd ed., Pergamon Press, Oxford.Google Scholar
  35. Christie, W. W. and J. H. Moore. 1972. The lipid composition and triglyceride structure of eggs from several avian species. Comp. Biochem. Physiol. 41B:297–306.Google Scholar
  36. Clark, A. B. and D. S. Wilson. 1981. Avian breeding adaptations: hatching asynchrony, brood reduction, and nest failure. Quart. Rev. Biol. 56:253–277.Google Scholar
  37. Clark, J. A. and R. E. Johnson. 1992. The influence of spring snow depth on White-tailed Ptarmigan breeding success in the Sierra Nevada. Condor 94:622–627.Google Scholar
  38. Daan, S., C. Dijkstra, R. Drent, and T. Meijer. 1988. Food supply and the annual timing of avian reproduction. In Acta XIX Congressus Internationalis Ornithologici, ed. H. Ouellet, pp. 392–407. National Museum of Natural Sciences, University of Ottawa Press, Ottawa, Canada.Google Scholar
  39. Dahl, E. 1970. Studies of the fine structure of ovarian interstitial tissue. 3. The innervation of the thecal gland of the domestic fowl. Z. Zellforsch. Mikr. Anat. 109:212–226.Google Scholar
  40. Davis, J. W. F. 1975. Age, egg-size, and breeding success in the Herring Gull Larus argentatus. Ibis 117:460–473.Google Scholar
  41. Dawson, A. and A. R. Goldsmith. 1982. Prolactin and gonadotropin secretion in wild Starlings (Sturnus vulgaris) during the annual cycle and in relation to nesting, incubation, and rearing young. Gen. Comp. Endocrinol. 48:213–221.PubMedGoogle Scholar
  42. Donham, R. S., C. W. Dane, and D. S. Farner. 1976. Plasma luteinizing hormone and the development of ovarian follicles after loss of clutch in female Mallards (Anas platyrhynchos). Gen. Comp. Endocrinol. 29:152–155.PubMedGoogle Scholar
  43. Doubush, G. R., C. D., Ankney, and D. G. Krementz. 1985. The effect of apparatus, extraction time, and solvent type on lipid extractions of Snow Geese. Can. J. Zool 63:1917–1920.Google Scholar
  44. Drent, R. H. and S. Daan. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252.Google Scholar
  45. Duncan, D. C. 1987. Body reserves of neonate Northern Pintails (Anas acuta). Can. J. Zool. 811–816.Google Scholar
  46. Etches, R. J. and J. N. Petitte. 1990. Reptilian and avian follicular hierarchies: Models for the study of ovarian development. J. Exp. Zool. Suppl. 4:112–122.PubMedGoogle Scholar
  47. Ewald, P. E. and S. Rohwer. 1982. Effects of supplemental feeding on timing of breeding, clutch size and polygyny in Red-winged blackbirds Agelaius phoeniceus. J. Anim. Ecol. 51:429–450.Google Scholar
  48. Falconer, D. C. 1960. Introduction to Quantitative Genetics, Longman, New York.Google Scholar
  49. Farner, D. S. and J. C. Wingfield. 1980. Reproductive endocrinology of birds. Ann. Rev. Physiol. 42:457–472.Google Scholar
  50. Feare, C. J., G. M. Dunnet, and I. J. Patterson. 1974. Ecological studies of the rook (Corvus frugilegus) in northeast Scotland: food intake and feeding behavior. J. Appl. Ecol. 11:867–896.Google Scholar
  51. Flint, P. L. and J. S. Sedinger. 1992. Reproductive implications of egg-size variation in the Black Brant. Auk 109:896–903.Google Scholar
  52. Forbes, M. R. L. and C. D. Ankney. 1988. Intraclutch variation in egg weights of Pied-billed Grebes. Condor 90:709–711.Google Scholar
  53. Freeman, B. M. and M. A. Vince. 1974. Development of the Avian Embryo. Chapman & Hall, London.Google Scholar
  54. Gibb, J. 1950. The breeding biology of the Great and Blue Titmice. Ibis 92:507–539.Google Scholar
  55. Gibb, J. A. and M. M. Betts. 1962. Food and food supply of nestling tits (Paridae) in Breck-land pine. J. Anim. Ecol. 31:489–533.Google Scholar
  56. Graveland, J. and J. E. Berends. 1996. Timing of the calcium uptake and effect of calcium deficiency on behaviour and egg-laying in captive Great Tits. Physiol. Zool., in press.Google Scholar
  57. Graveland, J., R. van der Wal, J. H. van Balen, and A. J. van Noordwjk. 1994. Poor reproduction in forest passerines from decline of snail abundance on acidified soils. Nature 368:446–448.Google Scholar
  58. Hannon, S. J., K. Martin, and J. O. Schieck. 1988. Timing of reproduction in two populations of Willow Ptarmigan in northern Canada. Auk 105:330–338.Google Scholar
  59. Harvey, P. H. and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, England.Google Scholar
  60. Haywood, S. 1993. Sensory and hormonal control of clutch size in birds. Quart. Rev. Biol. 68:33–60.Google Scholar
  61. Haywood, S. and C. M. Perrins. 1992. Is clutch size affected by environmental conditions during growth? Proc. Royal Soc. Lond. B 249:195–197.Google Scholar
  62. Hepp, G. R., D. J. Stangohr, L. A. Baker, and R. A. Kennamer. 1987. Factors affecting variation in the egg and duckling components of Wood Ducks. Auk 104:435–443.Google Scholar
  63. Hill, W. L. 1993. Importance of prenatal nutrition to the development of a precocial chick. Devel. Psychobiol. 26:237–249.Google Scholar
  64. Hiom, L., M. Bolton, P. Managhan, and D. Worrall. 1991. Experimental evidence for food limitation in egg production in gulls. Ornis Scand. 22:94–97.Google Scholar
  65. Hirsch, K. V and C. R. Grau. 1981. Yolk formation and oviposition in captive Emus. Condor 83:381–382.Google Scholar
  66. Howe, H. F. 1976. Egg size, hatching asynchrony, sex, and brood reduction in the Common Grackle. Ecology 57:1195–1207.Google Scholar
  67. Howe, H. F. 1978. Initial investment, clutch size, and brood reduction in the Common Grackle (Quiscalus quiscula L.). Ecology 59:1109–1122.Google Scholar
  68. Hoyt, D. F. 1979. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96:73–77.Google Scholar
  69. Hussell, D. J. T. 1972. Factors affecting clutch size in arctic passerines. Ecol. Monogr. 42:317–364.Google Scholar
  70. Immelman, K. 1971. Ecological aspects of periodic reproduction. In Avian Biology, vol. 1. eds. D. S. Farner and J. R. King, pp. 342–389. Academic Press, New York.Google Scholar
  71. Jackson, N. H. and D. D. Roby. 1992. Fecundity and egg-laying patterns of captive yearling Brown-headed Cowbirds. Condor 94:585–589.Google Scholar
  72. Jensen, L. S. 1968. Vitamin E and essential fatty acids in avian reproduction. Fed. Proc. 27:914–919.PubMedGoogle Scholar
  73. Jones, P. J. 1974. The utilization of calcareous grit by laying Quelea quelea. Ibis 118:575–576.Google Scholar
  74. Jones, P. J. and P. Ward. 1976. The level of reserve protein as the proximate factor controlling the timing of breeding and clutch-size in the Red-billed Quelea Quelea quelea. Ibis 118:547–574.Google Scholar
  75. Jones, R. E. 1978a. Ovarian cycles in nonmammalian vertebrates. In The Vertebrate Ovary, ed. R. E. Jones, pp. 731–762. Plenum Press, New York.Google Scholar
  76. Jones, R. E. 1978b. Control of follicular selection. In The Vertebrate Ovary, ed. R. E. Jones, pp. 763–788. Plenum Press, New York.Google Scholar
  77. Jones, R. E. and D. C. Baxter. 1991. Gestation, with emphasis on corpus luteum biology, placentation, and parturition. In Vertebrate Endocrinology: Fundamentals and Biomedical Implications, vol. 4, Part A, pp. 205–301. Academic Press, New York.Google Scholar
  78. Kennedy, E. D. 1991. Determinate and indeterminate egg-laying patterns: a review. Condor 93:106–124.Google Scholar
  79. Kennedy, G. Y. and H. G. Vevers. 1976. A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B: 117–123.Google Scholar
  80. Kern, M. D. 1972. Seasonal changes in the reproductive system of the female White-crowned Sparrow, Zonotrichia leucophrys gambelii, in captivity and the field. I. The ovary. Z. Zellforsch. Mikrosk. Anat. 126:297–319.Google Scholar
  81. Kerr, D. C., C. D. Ankney, and J. S. Millar. 1982. The effect of drying temperature on extraction of petroleum ether soluable fats of small birds and mammals. Can. J. Zool. 60:470–472.Google Scholar
  82. King, J. R. 1973. Energetics of reproduction in birds. In Breeding Biology of Birds, ed. D. S. Farner, pp. 78–120. National Academy of Sciences, Washington, D.C.Google Scholar
  83. King, J. R. 1976. The annual cycle and its control in subequatorial Rufous-collared Sparrows. In Proceedings of the XVI Ornithological Congress, Canberra, eds. H. J. Frith and J. H. Calaby, pp. 310–321. Australian Academy of Science, Canberra.Google Scholar
  84. King, J. R. and J. D. Hubbard. 1981. Comparative patterns of nestling growth in White-crowned Sparrows. Condor 83:362–369.Google Scholar
  85. Kinsky, F. C. 1971. The consistent presence of paired ovaries in the kiwi (Apteryx) with some discussion of the condition in other birds. J. Ornithol. 12:334–357.Google Scholar
  86. Klomp, H. 1970. The determination of clutch size in birds: A review. Ardea 58:1–124.Google Scholar
  87. Kluyver, H. N., J. H. van Balen, and A. J. Cave. 1977. The occurrence of time-saving mechanisms in the breeding biology of the Great Tit, Parus major. In Evolutionary Ecology, eds. B. Stonehouse and C. Perrins, pp. 153–169. Macmillan, New York.Google Scholar
  88. Koenig, W. D. 1984. Geographic variation in clutch size in the Northern Flicker (Colaptes auratus): support for Ashmole’s hypothesis. Auk 101:698–706.Google Scholar
  89. Koenig, W. D. 1986. Geographical ecology of clutch size variation in North American woodpeckers. Condor 88:499–504.Google Scholar
  90. Krampitz, G. and W. Witt. 1979. Biochemical aspects of biomineralization. Top. Curr. Chem. 78:57–144.PubMedGoogle Scholar
  91. Krementz, D. G. and C. D. Ankney. 1986. Bioenergetics of egg production by female House Sparrows. Auk 103:299–305.Google Scholar
  92. Lack, D. 1947. The significance of clutch size. Ibis 89:302–352.Google Scholar
  93. Lack, D. 1950. The breeding seasons of European birds. Ibis 92:288–316.Google Scholar
  94. Lack, D. 1968. Ecological Adaptations for Breeding in Birds. Methuen, London.Google Scholar
  95. Leopold, A. S., M. Erwin, J. Oh, and B. Browning. 1976. Phytoestrogens: Adverse effects on reproduction in California Quail. Science 191:98–100.PubMedGoogle Scholar
  96. Lessells, C. M. and M. I. Avery. 1989. Hatching asynchrony in European Bee-eaters Merops apiaster. J. Anim. Ecol. 58:815–835.Google Scholar
  97. Lima, S. L. 1987. Clutch size in birds: a predation perspective. Ecology 68:1062–1070.Google Scholar
  98. Lundberg, C.-A. and R. A. Väisänen. 1979. Selective correlation of egg size with chick mortality in the Black-headed Gull (Larus ridibundus). Condor 81:146–156.Google Scholar
  99. MacLean S. F. 1974. Lemming bones as a source of calcium for arctic sandpipers (Calidris spp.). Ibis 116:552–557.Google Scholar
  100. Magrath, R. D. 1990. Hatching asynchrony in altricial birds. Biol. Rev. 65:587–622.Google Scholar
  101. Magrath, R. D. 1992a. Seasonal changes in egg-mass within and among clutches of birds: General explanations and a field study of the Blackbird Turdus merula. Ibis 134: 171–179.Google Scholar
  102. Magrath, R. D. 1992b. Roles of egg mass and incubation pattern in establishment of hatching hierarchies in the Blackbird (Turdus merula). Auk 109:474–487.Google Scholar
  103. Magrath, R. D. 1992c. The effect of egg mass on growth and survival of Blackbirds: A field experiment. J. Zool. (Lond.) 227:639–649.Google Scholar
  104. Manning, T. H. 1978. Measurements and weights of eggs of the Canada Goose, Branta canadensis, analyzed and compared with those of other species. Can. J. Zool. 56: 676–687.Google Scholar
  105. Martin, K. 1995. Pattern and mechanisms for age-dependent reproduction and survival in birds. Amer. Zool., 35:340–348.Google Scholar
  106. Martin, K., S. J. Hannon, and R. F. Rockwell. 1989. Clutch size variation and patterns of attrition in fecundity of Willow Ptarmigan. Ecology 70:1788–1799.Google Scholar
  107. Martin, R A. and T. W. Arnold. 1991. Relationships among fresh mass, incubation time, and water loss in Japanese Quail eggs. Condor 93:28–37.Google Scholar
  108. Martin, T. E. 1987. Food as a limit on breeding birds: a life-history perspective. Ann. Rev. Ecol. Syst. 18:453–487.Google Scholar
  109. McCready, S. T. and D. A. Roland. 1973. Protein composition of egg yolk, albumen and vitelline membranes from hens fed a calcium deficient diet. Poultr. Set 52:1545–1551.Google Scholar
  110. Mebs, Th. 1964. Zur Biologie und Populationsdynamik des Mäusebussards (Buteo buteo). J. Ornithol. 105:247–306.Google Scholar
  111. Meijer, T. 1991. The effect of a period of food restriction on gonad size and moult of male and female Starlings Sturnus vulgaris under constant photoperiod. Ibis 133:80–84.Google Scholar
  112. Meijer, T., D. Masman, and S. Daan. 1989. Energetics of reproduction in female kestrels. Auk 106:549–559.Google Scholar
  113. Mendez-de la Cruz, F. R., L. J. Guillette, and M. Villagran-Santa Cruz. 1993. Differential atresia of ovarian follicles and its effect on the clutch size of two populations of the viviparous lizard Sceloporus mucronatus. Funct. Ecol 7:535–540.Google Scholar
  114. Montevecchi, W. A. 1976. Egg size and the egg predatory behaviour of Crows. Behaviour 57:307–320.Google Scholar
  115. Morton, M. L. 1976. Adaptive strategies of Zonotrichia breeding at high latitude or altitude. In Proceedings XVI International Ornithological Congress, Canberra, eds. H. J. Frith and J. H. Calaby, pp. 323–336. Australian Academy of Science, Canberra.Google Scholar
  116. Morton, M. L. 1978. Snow conditions and the onset of breeding in the Mountain White-crowned Sparrow. Condor 80:285–289.Google Scholar
  117. Morton, M. L., J. L. Horstmann, and J. M. Osborn. 1972. Reproductive cycle and nesting success of the Mountain White-crowned Sparrow (Zonotrichia leucophrys oriantha) in the central Sierra Nevada. Condor 74:152–163.Google Scholar
  118. Muma, K. E. and C. D. Ankney. 1987. Variation in weight and composition of Red-winged Blackbird eggs. Can. J. Zool. 65:605–607.Google Scholar
  119. Murphy, M. E. 1994. Amino acid compositions of avian eggs and tissues: Nutritional implications. J. Avian Biol. 25:27–38.Google Scholar
  120. Murton, R. K. and N. J. Westwood. 1977. Avian Breeding Cycles. Clarendon Press, Oxford.Google Scholar
  121. Murton, R. K., N. J. Westwood, and A. J. Isaacson. 1974. Factors affecting egg-weight and moult of the Wood Pigeon Columba palumbus. Ibis 116:52–73.Google Scholar
  122. Narbaitz, R. 1987. Role of vitamin D in the development of the chick embryo. J. Exp. Zool. Suppl. 1, 15–23.PubMedGoogle Scholar
  123. Newton, I. 1989. Synthesis. In Lifetime Reproduction in Birds, ed. I. Newton, pp. 441–469. Academic Press, New York.Google Scholar
  124. Nice, M. M.1962. Development of behavior in precocial birds. Trans. Linn. Soc. N.Y. 8:1–211.Google Scholar
  125. Nisbet, I. C. T. 1978. Dependence of fledging success on egg-size, parental performance and egg-composition among Common and Roseate Terns, Sterna hirundo and S. dougallii. Ibis 120:207–215.Google Scholar
  126. Noble, R. C. 1987. Lipid metabolism in the chick embryo: Some recent ideas. J. Exp. Zool. Suppl. 1:65–73.PubMedGoogle Scholar
  127. Noble, R. C. 1991. Comparative composition and utilisation of yolk lipid by embryonic birds and reptiles. In Egg Incubation. Its Effects on Embryonic Development in Birds and Reptiles, eds. D. C. Deeming and M. W. J. Ferguson, pp. 17–28. Cambridge University Press, Cambridge. U.K.Google Scholar
  128. van Noordwijk, A. J., J. H. van Balen, and W. Scharloo. 1981. Genetic and environmental variation in clutch size of the Great Tit. Neth. J. Zool. 31:342–372.Google Scholar
  129. O’Connor R. J. 1979. Egg weights and brood reduction in the European swift (Apus apus). Condor 81:133–145.Google Scholar
  130. Ojanen, M. 1983. Composition of eggs of the Great Tit (Parus major) and the Pied Flycatcher (Ficedula hypoleuca). Ann. Zool. Fennici 20:57–73.Google Scholar
  131. Ojanen, M., M. Orell, and R. A. Väisänen. 1978. Egg and clutch sizes in four passerine species in northern Finland. Ornis Fenn. 55:60–68.Google Scholar
  132. Ojanen, M., M. Orell, and R. A. Väisänen. 1981. Egg size variation within passerine clutches: effect of ambient temperature and laying sequence. Ornis Fenn. 58:93–109.Google Scholar
  133. Pagel, M. D. and P. H. Harvey. 1988. Recent developments in the analysis of comparative data. Quart. Rev. Biol. 63:413–440.PubMedGoogle Scholar
  134. Palmer, B. D. and L. J. Guillette. 1991. Oviductal proteins and their influence on embryonic development in birds and reptiles. In Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, eds. D. C. Deeming and M. W. J. Ferguson, pp. 29–46. Cambridge University Press, Cambridge. U.K.Google Scholar
  135. Parsons, J. 1970. Relationship between egg size and post-hatching chick mortality in the Herring Gull (Larus argentatus). Nature 228:1221–1222.PubMedGoogle Scholar
  136. Pennycuick, C. J. and G. A. Bartholomew. 1973. Energy budget of the Lesser Flamingo (Phoeniconaias minor Geoffroy). E. Afr. Wildl. J. 11:199–207.Google Scholar
  137. Perrins, C. M. 1965. Population fluctuation and clutch-size in the Great Tit, Parus major. J. Anim. Ecol. 34:601–647.Google Scholar
  138. Perrins, C. M. 1970. The timing of birds’ breeding seasons. Ibis 112:242–255.Google Scholar
  139. Perrins, C. M. and P. J. Jones. 1974. The inheritance of clutch size in the Great Tit Parus major. Condor 76:225–229.Google Scholar
  140. Perrins, C. M. and D. Moss. 1975. Reproductive rates in the Great Tit. J. Anim. Ecol. 44: 695–706.Google Scholar
  141. Petersen, M. R. 1992. Reproductive ecology of Emperor Geese: Annual and individual variation in nesting. Condor 94:383–397.Google Scholar
  142. Phelps, R. A., F. S. Shenstone, A. R. Kemmerer, and R. J. Evans. 1965. A review of cyclopropenoid compounds: biological effects of some derivatives. Poultr. Sci. 44:358–394.Google Scholar
  143. Price, T. and L. Liou. 1989. Selection on clutch size in birds. Am. Nat. 134:950–959.Google Scholar
  144. Prince, H. H., P. B. Siegel, and G. W. Cornwell. 1970. Inheritance of egg production and juvenile growth in Mallards. Auk 87:342–352.Google Scholar
  145. Rahn, H. and A. Ar. 1974. The avian egg: Incubation time and water loss. Condor 76: 147–152.Google Scholar
  146. Rahn, H., C. V Paganelli, and A. Ar. 1975. Relation of avian egg weight to body weight. Auk 92:750–765.Google Scholar
  147. Rahn, H., R R. Sotherland, and C. V Paganelli. 1985. Interrelationships between egg mass and adult body mass and metabolism among passerine birds. J. Ornithol 126:263–271.Google Scholar
  148. Rhymer, J. M. 1988. The effect of egg size variability on thermoregulation of Mallard (Anas platyrhynchos) offspring and its implications for survival. Oecologia (Berlin) 75:20–24.Google Scholar
  149. Richards, M. P. and N. C. Steele. 1987. Trace element metabolism in the developing avian embryo: a review. J. Exp. Zool. Suppl. 1:39–51.PubMedGoogle Scholar
  150. Ricklefs, R. E. 1974. Energetics of reproduction in birds. In Avian Energetics ed. R. A. Paynter, pp. 152–297. Nuttall Ornithological Club, Cambridge, Massachusetts.Google Scholar
  151. Ricklefs, R. E. 1977. Composition of eggs of several bird species. Auk 94:350–356.Google Scholar
  152. Ricklefs, R. E. 1982. Observations on handling procedures and composition of European Starling eggs. Condor 84:338–339.Google Scholar
  153. Ricklefs, R. E. 1984a. Variation in the size and composition of eggs of the European Starling. Condor 86:1–6.Google Scholar
  154. Ricklefs, R. E. 1984b. Egg dimensions and neonatal mass of shorebirds. Condor 86:7–11.Google Scholar
  155. Ricklefs, R. E., D. C. Hahn, and W. A. Montevecchi. 1978. The relationship between egg size and chick size in the Laughing Gull and Japanese Quail. Auk 95:135–144.Google Scholar
  156. Ricklefs, R. E. and W. A. Montevecchi. 1979. Size, organic composition and energy content of North Atlantic Gannet Morus bassanus eggs. Comp. Biochem. Physiol 64A: 161–165.Google Scholar
  157. Robbins, C. T. 1993. Wildlife Feeding and Nutrition, 2nd ed., Academic Press, New York.Google Scholar
  158. Rohwer, F. C. 1986. Composition of Blue-winged Teal eggs in relation to egg size, clutch size, and timing of laying. Condor 88:513–519.Google Scholar
  159. Rohwer, E C. 1988. Inter- and intraspecific relationships between egg size and clutch size in waterfowl. Auk 105:161–176.Google Scholar
  160. Romanoff, A. L. 1944. Avian spare yolk and its assimilation. Auk 61:235–241.Google Scholar
  161. Romanoff, A. L. 1967. Biochemistry of the Avian Embryo. John Wiley-Interscience, New York.Google Scholar
  162. Romanoff, A. L. and A. J. Romanoff. 1949. The Avian Egg, Wiley, New York.Google Scholar
  163. Roudybush, T. E., C. R. Grau, M. R. Petersen, D. G. Ainley, K. V Hirsch, A. P. Gilman, and S. M. Patten. 1979. Yolk formation in some Charadriiform birds. Condor 81:293–298.Google Scholar
  164. Sanders, E. H., P. D. Garner, P. J. Berger, and N. C. Negus. 1981. 6-methoxybenzoxazoli- none: a plant derivative that stimulates reproduction in Microtus montanus. Science 214:67–69.PubMedGoogle Scholar
  165. Sauer, E. G. F. and E. M. Sauer. 1966. The behavior and ecology of the South African Ostrich. Living Bird 5:45–75.Google Scholar
  166. Savage, J. E. 1968. Trace minerals and avian reproduction. Fed. Proc. 27:927–931.PubMedGoogle Scholar
  167. Saether, B.-E. 1990. Agespecific variation in reproductive performance of birds. Current Ornithology, vol. 7, ed. D. M. Power, pp. 251–283. Plenum Press, New York.Google Scholar
  168. Scanes, C. G. and P. Griminger. 1990. Endocrine-nutrition interactions in birds. J. Exp. Zool. Suppl. 4:98–105.PubMedGoogle Scholar
  169. Schifferli, L. 1973. The effect of egg weight on the subsequent growth of nestling Great Tits (Parus major). Ibis 115:549–558.Google Scholar
  170. SchifFerli, L. 1980. Changes in the fat reserves in female House Sparrows Passer domesticus during egg laying. In Acta XVII Congressus Internationalis Ornithologici, ed. R. Nöring, pp. 1129–1135. Verlag der Deutschen Ornithologen-Gesellschaft, Berlin.Google Scholar
  171. Schmekel, L. 1960. Datum uber des Gewicht des Vogeldottersackes vom Schlupftag vis zum Schwinden. Rev. Suisse Zool. 68:103–110.Google Scholar
  172. Schönwetter, M.1960–1980. Handbuch der Oologie, ed. W. Meise. Akademie, Berlin.Google Scholar
  173. Shubert, C. A. 1990. Laying time and laying interval of the Lesser Snow Goose (Anser caerulescens caerulescens). M.Sc. Thesis. Queen’s University, Kingston, Ontario.Google Scholar
  174. Sibley, C. G. and J. E. Ahlquist. 1972. A comparative study of the egg white proteins of non-passerine birds. Peabody Mus. Nat. Hist. Bull. 39.Google Scholar
  175. Simkiss, K. 1975. Calcium and avian reproduction. Symp. Zool. Soc. Lond. 35:307–335.Google Scholar
  176. Simkiss, K. and C. Tyler. 1957. A histochemical study of the organic matrix of hen eggshells. Quart. J. Microbiol Sci. 98:19–28.Google Scholar
  177. Slagsvold, T. 1984. Clutch size variation of birds in relation to nest predation: On the cost of reproduction. J. Anim. Ecol. 53:945–953.Google Scholar
  178. Slagsvold, T. and J. T. Liijeld. 1989. Hatching asynchrony in birds: the hypothesis of sexual conflict over parental investment. Am. Nat. 134:239–253.Google Scholar
  179. Slagsvold, T., J. Sandvik, G. Roftstad, Ö. Lorentsen, and M. Husby. 1984. On the adaptive value of intraclutch egg-size variation in birds. Auk 101:685–697.Google Scholar
  180. Smith, C. C. and S. D. Fretwell. 1974. The optimal balance between size and number of off-spring. Am. Nat. 109:499–506.Google Scholar
  181. Sotherland, R R. and H. Rahn. 1987. On the composition of bird eggs. Condor 89:48–65.Google Scholar
  182. Stokland, J. N. and T. Amundsen. 1988. Initial size hierarchy in broods of the Shag: relative significance of egg size and hatching asynchrony. Auk 105:308–315.Google Scholar
  183. Sydeman, W. J. and S. D. Emslie. 1992. Effects of parental age on hatching asynchrony, egg size and third-chick disadvantage in Western Gulls. Auk 109:242–248.Google Scholar
  184. Thomas, V G. 1988. Body conditions, ovarian hierarchies, and their relation to egg formation in Anseriform and Galliform species. In Acta XIX Congressus Internationalis Or-nithologici, ed. H. Ouellet, pp. 353–363. National Museum of Natural Sciences, University of Ottawa Press, Ottawa, Canada.Google Scholar
  185. Thomas, V G. and H. G. Lumsden. 1981. An apparatus for determining the volume of eggs. Ibis 123:333–336.Google Scholar
  186. Tinbergen, J. M. and J. H. van Balen. 1988. Food and multiple breeding. In Acta XIX Congressus Internationalis Ornithologici, Ottawa, Canada, ed. H. Ouellet, pp. 380–391. National Museum of Natural Sciences, University of Ottawa Press, Ottawa.Google Scholar
  187. Vaisanen, R. A., L. Hilden, M. Soikkeli, and S. Vuolanto. 1972. Egg dimension variation in five wader species: the role of heredity. Ornis Fenn. 49:25–44.Google Scholar
  188. Vleck, C. M. and J. Priedkalns. 1985. Reproduction in Zebra Finches: Hormone levels and effect of dehydration. Condor 87:37–46.Google Scholar
  189. Wake, M. W. 1985. Oviduct structure and function in non-mammalian vertebrates. Fortsch. Zool. 30:427–435.Google Scholar
  190. Walsberg, G. E. 1983. Avian ecological energetics. In Avian Biology, vol. 7, eds. D. S. Farner, J. R. King, and K. C. Parkes, pp. 161–220. Academic Press, New York.Google Scholar
  191. Wangensteen, O. D. and H. Rahn. 1970/71. Respiratory gas exchange by the avian embryo. Respir. Physiol. 11:31–45.Google Scholar
  192. Washburn, K. W. 1979. Genetic variation in the chemical composition of eggs. Poult. Sci. 58:529–535.Google Scholar
  193. White, H. B. 1987. Vitamin-binding proteins in the nutrition of the avian embryo. J. Exp. Zool. Suppl. 1:53–63.PubMedGoogle Scholar
  194. White, H. B. 1991. Maternal diet, proteins, and egg quality. In Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, eds. D. C. Deeming and M. W. J. Ferguson, pp. 1–15. Cambridge University Press, Cambridge. U.K.Google Scholar
  195. Wiebe, K. L. and G. R. Bortolotti. 1995. Egg size and clutch size in the reproductive investment of American Kestrels. J. Zool., Lond. 237, in press.Google Scholar
  196. Wiebe, K. L. and K. Martin. 1994. Growing old in the cold: environment, age and reproduction in two ptarmigan. J. Ornithol. 135:385.Google Scholar
  197. Wiebe, K. L. and K. Martin. 1995. Ecological and physiological effects on egg laying intervals in ptarmigan. Condor 97:708–717.Google Scholar
  198. Williams, A. J. 1980. Offspring reduction in Macaroni and Rockhopper Penguins. Auk 97:754–759.Google Scholar
  199. Williams, A. J., W. R. Siegfried, and J. Cooper. 1982. Egg composition and hatchling precocity in seabirds. Ibis 124:456–470.Google Scholar
  200. Winkler, D. W. and J. R. Walters. 1983. The determination of clutch size in precocial birds. In Current Ornithology, vol. 1, ed. R. F. Johnston, pp. 33–68. Plenum Press, New York.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Cynthia Carey

There are no affiliations available

Personalised recommendations