Nonphotochemical Quenching of Chlorophyll Fluorescence

  • Peter Horton
Part of the NATO ASI Series book series (NSSA, volume 287)


Measurement of chlorophyll fluorescence is an invaluable method for examining the interaction of photosynthetic organisms with their environment and for the non-invasive probing of the metabolism of the chloroplast (Krause & Weis, 1991; Horton & Bowyer, 1990). Fluorescence, most of which is emitted from PSII chlorophylls at room temperature, can be quenched from its maximum value, Fm, as found in a healthy dark adapted sample, either photochemically or nonphotochemically. Whereas photochemical quenching occurs due to the process of energy consumption in photosynthetic electron transport, the quenching of fluorescence nonphotochemically in general terms reflects a change in “state” of the photosynthetic apparatus — thus, its measurement has provided evidence of the presence of, on the one hand, regulatory mechanisms, and on the other, inhibition and damage to the thylakoid membrane under stress conditions. Nonphotochemical quenching is measured most often as the decrease in the Fm value to some new value Fm’, and this can be recorded in any given steady state using modulated fluorimetry, in the laboratory or in the field, by application of a brief saturating light pulse to close PSII centres (Quick & Horton, 1984; Schreiber et al., 1986). If the change in Fm is normalised on Fm’, the value of qN then approaches direct proportionality to the rate of energy dissipation (Demmig-Adams, 1990; Bilger & Björkman, 1990); however, this is only strictly correct if the quenching process is of the Stern-Volmer type. Alternatively, qN can be calculated by normalising the change in Fm on the F v , and in this case has a range of 0 to 1 (Schreiber et al., 1986; van Kooten & Snel, 1990); the disadvantage of this calculation is that Fo’ needs to be measured to determine Fv’, something quite difficult in the field, and furthermore, the qN value becomes very insensitive to increases in energy dissipation rate at high values.


Chlorophyll Fluorescence Thylakoid Membrane Nonphotochemical Quenching Xanthophyll Cycle PSII Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams W.W., Demmig-Adams B. & Winter, K. (1990). Plant Physiol., 92:302–309PubMedCrossRefGoogle Scholar
  2. Allen J.F. (1992) Biochim Biophys Acta, 1098: 275–335PubMedCrossRefGoogle Scholar
  3. Andrews J.R., Bredenkamp G.J. & Baker NR (1993) Photosynth Res 38:15–26CrossRefGoogle Scholar
  4. Arvidsson P-O, Bratt CE, Andréasson L-E, Åkerlund H-E (1993) Photosynth Res., 37:217–225CrossRefGoogle Scholar
  5. Baker N.R., Farage P.K., Stirling C.M. & Long S.P. (1994). in “Photoinhibition of Photosynthesis”, (Baker, N.R. & Bowyer, J.R., ed.), Bios Scientific Pubs, Oxford UK, pp 349–363Google Scholar
  6. Bassi R., Pineau B., Dainese P. & Marquardt J. (1993) Eur. J. Biochem., 212:297–303PubMedCrossRefGoogle Scholar
  7. Bilger W. & Björkman O. (1994) Planta, 193: 238–246CrossRefGoogle Scholar
  8. Bilger W. & Björkman O. (1990) Photosynth. Res., 25: 173–185CrossRefGoogle Scholar
  9. Briantais J-M. (1994) Photosynth. Res., 40: 287–294CrossRefGoogle Scholar
  10. Briantais J-M., Vernotte C., Picaud M., & Krause G.H. (1979) Biochim. Biophys. Acta, 548:128–138PubMedCrossRefGoogle Scholar
  11. Burke J.J., Ditto C.L., & Arntzen C.J. (1978) Arch. Biochem. Biophys, 187:252–263PubMedCrossRefGoogle Scholar
  12. Cleland R.E., Melis A., & Neale P.J. (1986) Photosynth. Res., 9:79–88CrossRefGoogle Scholar
  13. Crofts J., Horton P. (1991) Biochim. Biophys. Acta, 1058:187–193CrossRefGoogle Scholar
  14. Crofts A.R., & Yerkes C.T. (1994) FEBS Letters, 352:265–270PubMedCrossRefGoogle Scholar
  15. DeCoster B., Christiansen R.L., Gebhard R., Lugtenberg J., Farhoosh R., & Frank H.A. (1992) Biochim. Biophys. Acta, 1102:107–114.PubMedCrossRefGoogle Scholar
  16. Demmig B., & Winter K, (1988) Aust. J. Plant. Physiol., 15:163–178CrossRefGoogle Scholar
  17. Demmig-Adams B. (1990) Biochim. Biophys. Acta, 1020:1–24CrossRefGoogle Scholar
  18. Demmig-Adams B., & Adams W.W. (1992) Annu. Rev. Plant. Physiol. Plant. Mol. Biol, 43:599–626CrossRefGoogle Scholar
  19. Fernyhough P., Foyer C.H., & Horton P. (1983) Biochim. Biophys. Acta, 725:155–161.CrossRefGoogle Scholar
  20. Frank H.A., Cua A., Chynwat V., Young A.J., Goztola D., & Wasielewski M.R. (1994) Photosynth. Res., 41:389–395.CrossRefGoogle Scholar
  21. Garab G., Faludi-Daniel A., Sutherland J.C., & Hind G. (1988) Biochemistry, 27:2425–2430CrossRefGoogle Scholar
  22. Genty B., Briantais J-M., & Baker N.R. (1989) Biochim. Biophys. Acta, 990:87–92Google Scholar
  23. Gilmore A.M., & Björkman O. (1994) Planta, 192:537–544.CrossRefGoogle Scholar
  24. Gilmore A.M., & Yamamoto H.Y. (1992) Proc. Natl. Acad. Sci. USA, 89:1899–1903.PubMedCrossRefGoogle Scholar
  25. Gilmore A.M., & Yamamoto H.Y. (1992) Photosynth. Res., 35:67–78CrossRefGoogle Scholar
  26. Horton P., & Bowyer J.R. (1990) in “Methods in Plant Biochemistry”, (Harwood, J.L., & Bowyer, J.R. eds), Vol 4, Academic Press, pp 259–296Google Scholar
  27. Horton P., & Hague A. (1988) Biochim. Biophys. Acta, 932:107–115CrossRefGoogle Scholar
  28. Horton P., Noctor G., & Rees D. (1989) in “Perspectives in the Biochemical and Genetic Regulation of Photosynthesis”, (Zelitch, I. ed.) Alari Liss Inc, New York, pp 145–158Google Scholar
  29. Horton P., & Ruban A. (1992) Photosynt. Res. 34:375–385CrossRefGoogle Scholar
  30. Horton P., & Ruban A. (1994) in “Photoinhibition of Photosynthesis”, (Baker, N.R. & Bowyer, J.R. eds), Bios Scientific Publishers, Oxford, pp 111–128Google Scholar
  31. Horton P., Ruban A.V., Rees D., Pascal A.A., Noctor G., & Young A.J. (1991) FEBS Lett., 292:1–4PubMedCrossRefGoogle Scholar
  32. Horton P., Ruban A.V., & Walters R.G. (1994) Plant. Physiol. 106:415–420.PubMedGoogle Scholar
  33. Irrgang K-D., Renger G., & Vater J. (1991) Eur. J. Biochem. 201:515–522PubMedCrossRefGoogle Scholar
  34. Jansson S. (1994) Biochim. Biophys. Acta. 1184:1–19PubMedCrossRefGoogle Scholar
  35. Johnson G.N., Young A.J., Scholes J.D., & Horton P. (1993) Plant. Cell. Environ. 16:673–679CrossRefGoogle Scholar
  36. Krause G.H. (1973) Biochim. Biophys. Acta, 292:715–728PubMedCrossRefGoogle Scholar
  37. Krause G.H. (1988) Physiol. Plant. 74:566–574.CrossRefGoogle Scholar
  38. Krause G.H., & Weis E. (1991) Annu. Rev. Plant Physiol. Plant Mol. Biol., 42:313–349CrossRefGoogle Scholar
  39. Krause G.H., Laasch H., & Weis E. (1988) Plant Physiol. Biochem., 26:445–452.Google Scholar
  40. Kreiger A., & Weis E. (1993) Photosynth. Res. 37:117–130CrossRefGoogle Scholar
  41. Krieger A., Moya I., & Weis E. (1992) Biochim. Biophys. Acta, 1102:167–176CrossRefGoogle Scholar
  42. Kühlbrandt W., & Wang D.N. (1991) Nature, 350:130–134.PubMedCrossRefGoogle Scholar
  43. Kühlbrandt W., Wang D.N., & Fujiyoshi Y, (1994) Nature, 367:614–621PubMedCrossRefGoogle Scholar
  44. Lee A.I., & Thornber J.P. (1995) Plant Physiol, 107:565–574PubMedCrossRefGoogle Scholar
  45. Lokstein H., Härtel H., Hoffmann P., Woitke P., & Renger G. (1994) J. Photochem. Photobiol., 26:174–185Google Scholar
  46. Mäenpää, & Andersson B. (1989) Z. Naturforsch. 44:403–406Google Scholar
  47. Mullineaux C.W., Ruban A.V., & Horton P. (1994) Biochim. Biophys. Acta, 1185:119–123CrossRefGoogle Scholar
  48. Noctor G., Horton P. (1990) Biochim. Biophys. Acta 1016:228–234.CrossRefGoogle Scholar
  49. Noctor G., Rees D., Young A., & Horton P. (1991) Biochim. Biophys Acta 1057:320–330CrossRefGoogle Scholar
  50. Noctor G., Ruban A.V., & Horton P. (1993) Biochim. Biophys. Acta. 1183:339–344CrossRefGoogle Scholar
  51. Ogren E. (1994) in “Photoinhibition of Photosynthesis”, (Baker N.R., & Bowyer J.R., eds), Bios Scientific Pubs, Oxford UK, pp 433–447Google Scholar
  52. Öquist G., Chow W.S., & Anderson J.M. (1992) Planta, 186:450–460CrossRefGoogle Scholar
  53. Owens T.G., Shreve A.P., & Albrecht A.C. (1992) in “Research in Photosynthesis”, (Murata N. ed), Vol 4, Kluwer Academic Pubs, Dordrecht, pp 179–186Google Scholar
  54. Owens T.G. (1994) in “Photoinhibition of Photosynthesis”, (Baker N.R., & Bowyer J.R. eds), Bios Scientific Pubs, Oxford UK, pp 95–109Google Scholar
  55. Peter G.F., & Thornber J.P. (1991) J. Biol. Chem., 266:16745–16754PubMedGoogle Scholar
  56. Pfündel E., & Bilger W. (1994) Photosynth. Res. 42:89–110CrossRefGoogle Scholar
  57. Quick W.P., & Horton P. (1984) Proc. Roy. Soc. B, 220:371–382CrossRefGoogle Scholar
  58. Quick W.P., & Stitt M. (1989) Biochim. Biophys. Acta, 977:287–296CrossRefGoogle Scholar
  59. Rees D., Noctor G., & Horton P. (1990) Photosynth. Res., 25:199–211CrossRefGoogle Scholar
  60. Rees D., Noctor G, Ruban A.V., Crofts J., Young A., & Horton P. (1992) Photosynth. Res., 31:11–19.CrossRefGoogle Scholar
  61. Ruban A.V., & Horton P. (1992) Biochim. Biophys. Acta, 1102:30–38CrossRefGoogle Scholar
  62. Ruban A.V., & Horton P (1994) Photosynth. Res. 40:181–190CrossRefGoogle Scholar
  63. Ruban A.V., Rees D., Noctor G., Young A., & Horton P. (1991) Biochim. Biophys. Acta, 1059:355–360CrossRefGoogle Scholar
  64. Ruban A.V., Rees D., Pascal A.A., & Horton P. (1992a) Biochim. Biophys. Acta, 1102:39–44CrossRefGoogle Scholar
  65. Ruban A.V., Walters R.G., & Horton P. (1992b) FEBS Lett. 309:175–179PubMedCrossRefGoogle Scholar
  66. Ruban A.V., Young A.J., & Horton P. (1993a) Plant. Physiol. 102:741–750PubMedGoogle Scholar
  67. Ruban A.V., Horton P., & Young A.J. (1993b) J. Photobiol. Photobiochem. B Biol., 21:229–234.CrossRefGoogle Scholar
  68. Ruban A.V., Young A.J., Pascal A.A., & Horton P. (1994a) Plant Physiol. 104:227–234PubMedGoogle Scholar
  69. Ruban A.V., Horton P., & Young A.J. (1994b) Biochim. Biophys. Acta, 1186:123–127CrossRefGoogle Scholar
  70. Ruban A.V., Dekker J.P., Horton P., & van Grondelle R. (1995a) Photochem. Photobiol., in pressGoogle Scholar
  71. Ruban A.V., Horton P., & Robert B. (1995) Biochemistry, 34:2333–2337PubMedCrossRefGoogle Scholar
  72. Schreiber U., Schliwa U., & Bilger W. (1986) Photosynth. Res. 10:51–62CrossRefGoogle Scholar
  73. Spangfort M., & Andersson B. (1989) Biochim. Biophys. Acta, 977:163–170CrossRefGoogle Scholar
  74. Thayer S.S., & Björkman O. (1992) Photosynth. Res. 33:213–225CrossRefGoogle Scholar
  75. Timmerhaus M., & Weis E. (1990) in “Current Research in Photosynthesis”, (M Baltscheffsky, ed.), Kluwer Acad Pubs, Netherlands, vol II, pp771–774Google Scholar
  76. van Kooten O., & Snel J.F.H. (1990) Photosynth. Res., 25:147–150CrossRefGoogle Scholar
  77. Walters R.G., & Horton P. (1991) Photosynth. Res., 27:121–133CrossRefGoogle Scholar
  78. Walters R.G., & Horton P. (1993) Photosynth. Res. 36:119–139.CrossRefGoogle Scholar
  79. Walters R.G., Ruban A.V., & Horton P. (1994) Eur. J. Biochem., 226:1063–1069PubMedCrossRefGoogle Scholar
  80. Weis E., & Berry J. (1987) Biochim. Biophys. Acta, 894:198–208CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Peter Horton
    • 1
  1. 1.Robert Hill Institute, Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations