Advertisement

Field-Induced Exciton Ionization Studied by Four-Wave Mixing

  • M. Koch
  • G. von Plessen
  • T. Meier
  • J. Feldmann
  • S. W. Koch
  • P. Thomas
  • E. O. Göbel
  • K. W. Goossen
  • J. M. Kuo
  • R. F. Kopf

Abstract

The dynamics of carriers induced by electric fields in semiconductor superlattices has received much interest in recent years. Phenomena like Bloch oscillations and negative differential velocity in these structures have been studied using a variety of experimental techniques [1–5]. One particular point of interest has been the transition of the miniband regime to the Bloch oscillation regime with increasing electric field [6,7]. Cw spectra of strongly-coupled superlattices have evidenced that this transition is concomitant with a rapid field-induced ionization of the zero-field miniband exciton [5,8]. While it has been pointed out from the theoretical side that the field-induced ionization process strongly influences the coherent dynamics in the transition region [9], no systematic experimental investigation of the ionization process has been carried out so far. One interesting question that such an investigation could help to answer is to what extent this ionization process differs from the well-documented case of field-induced exciton ionization in bulk semiconductors.

Keywords

Ionization Time Bloch Oscillation Coherent Dynamic Systematic Experimental Investigation Miniband Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Feldmann, et al., Phys. Rev. B46: 7252 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    C. Waschke, et al. Phys. Rev. Lett.70: 3319 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    T. Dekorsy, et al., Phys. Rev. B50: 8106 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    A. Sibille, et al., Phys. Rev. Lett.64: 52 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    G. Cohen, and I. Bar-Joseph, Phys. Rev. B.46: 9857 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    G. von Plessen, et al., Phys. Rev. B49: 14058 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    P. Leisching, et al., Phys. Rev. B50: 14389 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    E.E. Méndez, F. Agullo-Rueda, and J.M.Hong, Phys. Rev. Lett.60: 2426 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    T. Meier, et al Phys. Rev. B.51: 14490 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    J. Kuhl, et al in “Festkörperprobleme, Advances in Solid State Physics, Vol. 29” U. Rössler ed.Google Scholar
  11. 11.
    J. Feldmann, et al., Phys. Rev. Lett.70: 3027 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    F. Jahnke, et al., Phys. Rev. B50: 8114 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    G. von Plessen, et al., Appl.Phys. Lett.63: 2372 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A. Chomette, et al., Europhys. Lett.4: 461 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    G. v. Plessen, et al. (unpublished).Google Scholar
  16. 16.
    T. Meier, et al, Phys. Rev. Lett.. 73: 902 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    M. Wegener, et al., Phys. Rev. A42: 5675 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    T. Yajima and Y. Taira, J. Phys. Soc. Jpn.47: 1620 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    D.A.B. Miller, et alPhys. Rev. B32: 1043 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Koch
    • 1
    • 2
  • G. von Plessen
    • 1
    • 3
  • T. Meier
    • 1
  • J. Feldmann
    • 1
  • S. W. Koch
    • 1
  • P. Thomas
    • 1
  • E. O. Göbel
    • 1
    • 4
  • K. W. Goossen
    • 2
  • J. M. Kuo
    • 2
  • R. F. Kopf
    • 2
  1. 1.Department of Physics and Material Sciences CenterPhilipps University of MarburgMarburgGermany
  2. 2.AT&T Bell LaboratoriesHolmdelUSA
  3. 3.Clarendon LaboratoryUniversity of OxfordOxfordUK
  4. 4.Physikalisch Technische BundesanstaltBraunschweigGermany

Personalised recommendations