Advertisement

On the Possible Role of Endothelial Cell Heterogeneity in Angiogenesis

  • Peter I. Lelkes
  • Vangelis G. Manolopoulos
  • Matthew Silverman
  • Shaosong Zhang
  • Soverin Karmiol
  • Brian R. Unsworth
Part of the NATO ASI Series book series (NSSA, volume 285)

Abstract

The endothelial cell (EC1) lining of all blood conduits and lymphatics performs a large array of pivotal physiological functions. The generation of new blood vessels by vasculogenesis and/or angiogenesis is but one of the complex issues of the multifaceted physiology of vascular ECs (34,73,75). Functional and immunological heterogeneity, for example between venous and arterial ECs, or ECs lining large vessels and microvessels, is another manifestation of the complex biology of these pluripotent cells (22,78,93). Since the generation of new blood vessels is a highly organized, localized event which occurs in organ/tissue-specific microvasculature, we hypothesize that the local microenvironment of “angiogenic” microvessels may contain unique, site-specific cues which contribute to EC heterogeneity and which, in turn, makes these ECs especially prone to activation by angiogenic stimuli. In the wake of our increased awareness of the intricacies of both angiogenesis and endothelial cell heterogeneity, we have begun to explore possible connections between these two seemingly unrelated concepts.

Keywords

Endothelial Cell Adenylyl Cyclase Human Endothelial Cell Cyclic Strain cAMP Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andree, H. A. M. and Y. Nemerson. 1995. Tissue factor: regulation of activity by flow and phospholipid surfaces. Blood Coagul. Fibrinolysis 6:189–197.PubMedCrossRefGoogle Scholar
  2. 2.
    Archipoff, G., A. Beretz, K. Bartha, C. Brisson, C. de la Salle, C. Froget-Léon, C. Klein-Soyer, and J. P. Cazenave. 1993. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities. Br. J. Pharmacol. 109:18–28.PubMedGoogle Scholar
  3. 3.
    Archipoff, G., A. Beretz, J. Freyssinet, C. Klein-Soyer, C. Brisson, and J. Cazenavel 1991. Heterogeneous regulation of constitutive thrombomodulin or inducible tissue-factor activities on the surface of human saphenous-vein endothelial cells in culture following stimulation by interleukin-1, tumor necrosis factor, thrombin or phorbol ester. Biochem. J. 273:679–684.PubMedGoogle Scholar
  4. 4.
    Ausprunk, D.H., S.M. Dethlefsen, and E.R. Higgins. 1991. Distribution of fibronectin, laminin and type IV collagen during development of blood vessels in the chick chorioallantoic membrane. In The development of the vascular system. R.N. Feinberg, G.K. Sherer, and R. Auerbach, editors. Karger, Basel. 93–107.Google Scholar
  5. 5.
    Bauer, J., M. Margolis, C. Schreiner, C. Edgell, J. Azizkhan, E. Lazarowski, and R. L. Juliano. 1992. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J. Cell. Physiol. 153:437–449.PubMedCrossRefGoogle Scholar
  6. 6.
    Bender, J. R., M. M. Sadeghi, C. Watson, S. Pfau, and R. Pardi. 1994. Heterogeneous activation thresholds to cytokines in genetically distinct endothelial cells: evidence for diverse transcriptional responses. Proc. Natl. Acad. Sci. USA 91:3994–3998.PubMedCrossRefGoogle Scholar
  7. 7.
    Bevilacqua, M. P., R. M. Nelson, G. Mannori, and O. Cecconi. 1994. Endothelial-leukocyte adhesion molecules in human disease. Annu. Rev. Med. 45:361–378.PubMedCrossRefGoogle Scholar
  8. 8.
    Bischoff, J. 1995. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 5:69–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Bottaro, D., D. Shepro, and H. B. Hechtman. 1986. Heterogeneity of intimai and microvessel endothelial cell barriers in vitro. Microvasc. Res. 32:389–398.PubMedCrossRefGoogle Scholar
  10. 10.
    Brooks, P. C., R. A. F. Clark, and D. A Cheresh. 1994. Requirement of vascular integrin α v ß 3 for angiogenesis. Science 264:569–571.PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks, P. C., A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier, and D. A. Cheresh. 1994. Integrin α v ß 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164.PubMedCrossRefGoogle Scholar
  12. 12.
    Carley, W. W., M. J. Niedbala, and M. E. Gerritsen. 1992. Isolation, cultivation and partial characterization of microvascular endothelium derived from human lung. Am. J. Respir. Cell Mol. Biol. 7:620–630.PubMedGoogle Scholar
  13. 13.
    Chaudhury, A. R. and P. A. D’Amore. 1991. Endothelial cell regulation by transforming growth factor-ß. J. Cell. Biochem. 47:224–229.CrossRefGoogle Scholar
  14. 14.
    Chen, J. and R. Iyengar. 1993. Inhibition of cloned adenylyl cyclases by mutant-activated Gi-α and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J. Biol. Chem.. 268:12253–12256.PubMedGoogle Scholar
  15. 15.
    Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone,Jr. 1986. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83:2114–2117.PubMedCrossRefGoogle Scholar
  16. 16.
    DeLisser, H. M., P. J. Newman, and S. M. Albelda. 1993. Platelet endothelial cell adhesion molecule (CD31). Curr. Top. Microbiol. Immunol. 184:37–45.PubMedGoogle Scholar
  17. 17.
    Eskin, S. G., C. L. Ives, L. V. Mclntire, and L. T. Navarro. 1984. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28:87–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Fajardo, L. F., H. H. Kwan, J. Kowalski, S. D. Prionas, and A. C. Allison. 1992. Dual role of tumor necrosis factor-α in angiogenesis. Am. J. Pathol. 140:539–544.PubMedGoogle Scholar
  19. 19.
    Fenyves, A. M., M. Saxer, and K. Spanel-Borowski. 1994. Bovine microvascular endothelial cells of separate morphology differ in growth and response to the action of interferon-γ. Experientia 50:99–104.PubMedCrossRefGoogle Scholar
  20. 20.
    Frangos, J. A. 1993. Physical forces and the mammalian cell. Academic Press, New York.Google Scholar
  21. Gerritsen, M. E., M. J. Niedbala, A. Szczepanski, and W. W. Carley. 1993. Cytokine activation of human macro- and microvessel-derived endothelial cells. Blood Cells 19:325–39; discussion 340–2.PubMedGoogle Scholar
  22. 22.
    Gerritsen, M. E. 1987. Functional heterogeneity of vascular endothelial cells. Biochem. Pharmacol. 36:2701–2711.PubMedCrossRefGoogle Scholar
  23. 23.
    Gimbrone, M. A., R. S. Cotran, and J. Folkman. 1974. Human vascular endothelial cells in culture. J. Cell Biol.. 60:673–684.PubMedCrossRefGoogle Scholar
  24. 24.
    Grabowski, E. F., D. B. Zuckerman, and Y. Nemerson. 1993. The functional expression of tissue factor by fibroblasts and endothelial cells under flow conditions. Blood 81:3265–3270.PubMedGoogle Scholar
  25. 25.
    Grant, D. S., H. K. Kleinman, I. D. Goldberg, M. M. Bhargava, B. J. Nickoloff, J. L. Kinsella, P. Polverini, and E. M. Rosen. 1993. Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. USA 90:1937–1941.PubMedCrossRefGoogle Scholar
  26. 26.
    Grant, D. S., P. I. Lelkes, K. Fukuda, and H. K. Kleinman. 1991. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev. Biol. 27A: 327–336.PubMedCrossRefGoogle Scholar
  27. 27.
    Haralabopoulos, G. C, D. S. Grant, H. K. Kleinman, P. I. Lelkes, S. P. Papaioannou, and M. E. Maragoudakis. 1994. Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71:575–582.PubMedGoogle Scholar
  28. 28.
    Hauser, I. A., D. R. Johnson, and J. A. Madri. 1993. Differential induction of VCAM-1 on human iliac venous and arterial endothelial cells and its role in adhesion. J. Immunol. 151:5172–5185.PubMedGoogle Scholar
  29. 29.
    Hudlicka, O. and M.D. Brown. 1993. Physical forces and angiogenesis. In Mechanoreception by the vascular wall. G.M. Rubanyi, editor. Futura Publishing Co., Inc. New York. pp. 197–241.Google Scholar
  30. 30.
    Iba, T. and B. E. Sumpio. 1991. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42:245–254.PubMedCrossRefGoogle Scholar
  31. 31.
    Iruela-Arispe, M. L. and E. H. Sage. 1993. Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-ß1. J. Cell Biochem. 52:414–430.PubMedCrossRefGoogle Scholar
  32. 32.
    Iyengar, R. 1993. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J. 7:768–775.PubMedGoogle Scholar
  33. 33.
    Jackson, C. J., P. K. Garbett, B. Nissen, and L. Schrieber. 1990. Binding of human endothelium to Ulex europaeus I-coated dynabeads: application to the isolation of microvascular endothelium. J. Cell Sci. 96:257–262.PubMedGoogle Scholar
  34. 34.
    Jaffe, E. A. 1984. Biology of endothelial cells. Martinus Nijhoff, Boston.Google Scholar
  35. 35.
    Jaffe, E. A., R. L. Nachman, C. G. Becken, and C. R. Minick. 1973. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52:2745PubMedCrossRefGoogle Scholar
  36. 36.
    Johnson, B. A., G. K. Haines, L. A. Harlow, and A. E. Koch. 1993. Adhesion molecule expression in human synovial tissue. Arthritis Rheum. 36:137–146.PubMedGoogle Scholar
  37. 37.
    Kawabe, J., G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homey, and Y. Ishikawa. 1994. Differential activation of adenylyl cyclase of by protein kinase C isoenzymes. J. Biol. Chem. 269:16554–16558.PubMedGoogle Scholar
  38. 38.
    Kinjo, T., M. Takashi, K. Miyake, and H. Nagura. 1989. Phenotypic heterogeneity of vascular endothelial cells in the human kidney. Cell Tissue Res. 256:27–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Kinsella, J. L., D. S. Grant, B. S. Weeks, and H. K. Kleinman. 1992. Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp. Cell Res. 199:56–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Klein, C. L., H. Köhler, F. Bittinger, M. Wagner, I. Hermanns, K. Grant, J. C. Lewis, and C. J. Kirkpatrick. 1994. Comparative studies on vascular endothelium in vitro. I. Cytokine effects on the expression of adhesion molecules by human umbilical vein, saphenous vein and femoral artery endothelial cells. Pathobiology 62:199–208.PubMedCrossRefGoogle Scholar
  41. 41.
    Kubota, Y., H. K. Kleinman, G. R. Martin, and T. J. Lawley. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598.PubMedCrossRefGoogle Scholar
  42. 42.
    Lelkes, P.I., E.G. Manolopoulos, D.M. Chick, and B.R. Unsworth. 1994. Endothelial cell heterogeneity and organ-specificity. In Angiogenesis: molecular biology, clinical aspects. M.E. Maragoudakis, P. Guillino, and P.I. Lelkes, editors. Plenum Press, New York. 15–28.Google Scholar
  43. 43.
    Lelkes, P.I. and B.R. Unsworth. 1992. Role of heterotypic interactions between endothelial cells and parenchymal cells in organospecific differentiation: a possible trigger of vasculogenesis. In Angiogenesis in health and disease. M.E. Maragoudakis, P. Gullino, and P.I. Lelkes, editors. Plenum Press, New York, NY. 27–43.CrossRefGoogle Scholar
  44. 44.
    Levitzki, A. 1988. From epinephrine to cyclic AMP. Science 241:800–806.PubMedCrossRefGoogle Scholar
  45. 45.
    Madri, J. A., L. Bell, M. Marx, J. R. Merwin, C. Basson, and C. Prinz. 1991. Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: models of de-endothelialization and repair. J. Cell. Biochem. 45:123–130.PubMedCrossRefGoogle Scholar
  46. 46.
    Madri, J. A., B. M. Pratt, and A. M. Tucker. 1988. Phenotypic modulation of endothelial cells by transforming growth factor-ß depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384.PubMedCrossRefGoogle Scholar
  47. 47.
    Madri, J. A., S. K. Williams, T. Wyatt, and C. Mezzio. 1983. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  48. 48.
    Majno, G. 1965. Ultrastructure of the vascular membrane. In Handbook of physiology: circulation. W.F. Hamilton and P. Dow, editors. American Physiological Society, Washington, D.C. 2293–2543.Google Scholar
  49. 49.
    Makovetskii, V. D., V. A. Kozlov, and V. D. Mishalov. 1984. Organ and tissue-specific properties of the microcirculatory bed of the heart. Arch. Anat. Histol. Embryol. 86:25–30.Google Scholar
  50. 50.
    Manolopoulos, V. G. and P. I. Lelkes. 1993. Cyclic strain and forskolin differentially induce cAMP production in phenotypically diverse endothelial cells. Biochem. Biophys. Res. Commun. 191:1379–1385.PubMedCrossRefGoogle Scholar
  51. 51.
    Manolopoulos, V. G., J. Liu, B. R. Unsworth, and P. I. Lelkes. 1995. Adenylyl cyclase isoforms are differentially expressed in primary cultures of endothelial cells and whole tissue homogenates from various rat tissues. Biochem. Biophys. Res. Comm. 208:323–331.PubMedCrossRefGoogle Scholar
  52. 52.
    Manolopoulos, V. G., M. M. Samet, and P. I. Lelkes. 1995. Regulation of the adenylyl cyclase signalling system in various types of cultured endothelial cells. J. Cell. Biochem. 57:590–598.PubMedCrossRefGoogle Scholar
  53. 53.
    Mattsby-Baltzer, I., A. Jakobsson, J. Sörbo, and K. Norrby. 1994. Endotoxin is angiogenic. Int. J. Exp. Pathol. 75:191–196.PubMedGoogle Scholar
  54. 54.
    Moll, T., M. Czyz, H. Holzmüller, R. Hofer-Warbinek, E. Wagner, H. Winkler, F. H. Bach, and E. Hofer. 1995. Regulation of the tissue factor promoter in endothelial cells. J. Biol. Chem. 270:3849–3857.PubMedCrossRefGoogle Scholar
  55. 55.
    Motro, B., A. Itin, L. Sachs, and E. Keshet. 1990. Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc. Natl. Acad. Sci. USA 87:3092–3096.PubMedCrossRefGoogle Scholar
  56. 56.
    Mounier, F., J. M. Foidart, and M. C. Gubler. 1986. Distribution of extracellular matrix glycoproteins during normal development of human kidney. Lab. Invest. 54 No.4:394PubMedGoogle Scholar
  57. 57.
    Nagel, T., N. Resnick, W. J. Atkinson, C. F. Dewey,Jr., and M. A. Gimbrone,Jr. 1994. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 2:885–891.CrossRefGoogle Scholar
  58. 58.
    Nerem, R. M. 1993. Hemodynamics and the vascular endothelium. J. Biomech. Eng. 115:510-514.PubMedCrossRefGoogle Scholar
  59. 59.
    Olivo, M., R. Bhardwaj, K. Schultze-Osthoff, C. Sorg, H. J. Jacob, and I. Flamme. 1992. A comparative study on the effects of tumor necrosis factor-α (TNF-α), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo. Anat. Rec. 234:105–115.PubMedCrossRefGoogle Scholar
  60. 60.
    Paleolog, E. M., S.-A. J. Delasalle, W. A. Buurman, and M. Feldman. 1994. Functional activities of receptors for tumor necrosis factor-α on human vascular endothelial cells. Blood 84:2578–2590.PubMedGoogle Scholar
  61. 61.
    Papadimitriou, E. and P. I. Lelkes. 1993. Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Methods 162:41–45.PubMedCrossRefGoogle Scholar
  62. 62.
    Papadimitriou, E., B. R. Unsworth, M. E. Maragoudakis, and P. I. Lelkes. 1993. Time-course and quantification of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium 1:207–219.CrossRefGoogle Scholar
  63. 63.
    Papadimitriou, E., B.R. Unsworth, M.E. Maragoudakis, and P.I. Lelkes. 1994. Quantitative analysis of extracellular matrix formation in vivo and in vitro. In Angiogenesis: Molecular Biology, Clinical Aspects. M.E. Maragoudakis, P. Gullino, and P.I. Lelkes, editors. Plenum Press, New York.Google Scholar
  64. 64.
    Patrick, C. W., Jr. and L. V. Mclntire. 1995. Shear stress and cyclic strain modulation of gene expression in vascular endothelial cells. Blood Purif. 13:112–124.PubMedCrossRefGoogle Scholar
  65. 65.
    Piali, L., P. Hammel, C. Uherek, F. Bachmann, R. H. Gisler, D. Dunon, and B. A. Imhof. 1995. CD31/PECAM-1 is a ligand for α v ß 3 integrin involved in adhesion of leukocytes to endothelium. J. Cell Biol. 130:451–460.PubMedCrossRefGoogle Scholar
  66. 66.
    Resnick, N. and M. A. Gimbrone, Jr. 1995. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9:874–882.PubMedGoogle Scholar
  67. 67.
    Reynolds, L. P., S. D. Killilea, and D. A. Redmer. 1992. Angiogenesis in the female reproductive system. FASEB J. 6:886–892.PubMedGoogle Scholar
  68. 68.
    Rhodin, J. A. G. and H. Fujita. 1989. Capillary growth in the mesentery of normal young rats: intravital video and electron microscope analyses. J. Submicrosc. Cytol. Pathol. 21:1–34.PubMedGoogle Scholar
  69. 69.
    Risau, W., R. Hallmann, and U. Albrecht. 1986. Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 117:537–545.PubMedCrossRefGoogle Scholar
  70. 70.
    Risau, W. and H. Wolburg. 1990. Development of the blood-brain barrier. TINS 13(5):174–178.PubMedGoogle Scholar
  71. 71.
    Scoazec, J. Y., L. Racine, A. Couvelard, J. F. Flejou, and G. Feldmann. 1994. Endothelial cell heterogeneity in the normal human liver acinus: in situ immunohistochemical demonstration. Liver 14:113–123.PubMedGoogle Scholar
  72. 72.
    Seulberger, H., F. Lottspeich, and W. Risau. 1990. The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. EMBO J. 9:2151–2158.PubMedGoogle Scholar
  73. 73.
    Shepro, D. and P.A. D’Amore. 1984. Physiology and biochemistry of the vascular wall endothelium. In Handbook of physiology: section 2: the cardiovascular system: volume IV: microcirculation, part I. E.M. Renkin and C.C. Michel, editors. American Physiological Society, Bethesda, Maryland. 103–164.Google Scholar
  74. 74.
    Shweiki, D., A. Itin, D. Soffer, and E. Keshet. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.PubMedCrossRefGoogle Scholar
  75. 75.
    Simionescu, N. and M. Simionescu. 1988. Endothelial cell biology in health and disease. Plenum Press, New York.Google Scholar
  76. 76.
    Slowik, M. R., L. G. De Luca, W. Fiers, and J. S. Pober. 1993. Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am. J. Pathol. 143:1724–1730.PubMedGoogle Scholar
  77. 77.
    Stelzner, T. J., J. V. Weil, and R. F. O’Brien. 1989. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J. Cell. Physiol. 139:157–166.PubMedCrossRefGoogle Scholar
  78. 78.
    Stolz, D. B. and B. S. Jacobson. 1991. Macro- and microvascular endothelial cells in vitro: maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics. In Vitro Cell. Dev. Biol. 27A:169–182.PubMedCrossRefGoogle Scholar
  79. 79.
    Sumpio, B. E. (editor). 1993. Hemodynamic forces and vascular cell biology. R. G. Landes Company, Austin.Google Scholar
  80. 80.
    Sung, C., A. J. Arleth, and E. H. Ohlstein. 1994. Involvement of protein kinase C in cytokine-induced tissue factor production in human vascular endothelial cells. Endothelium 2:209–216.CrossRefGoogle Scholar
  81. 81.
    Surprenant, Y. M. and S. H. Zuckerman. 1989. A novel microtiter plate assay for the quantitation of procoagulant activity on adherent monocytes, macrophage and endothelial cells. Thromb. Res. 53:339–346.PubMedCrossRefGoogle Scholar
  82. 82.
    Swerlick, R. A. and T. J. Lawley. 1993. Role of microvascular endothelial cells in inflammation. J. Invest. Dermatol. 100, No. 1:111S–115S.PubMedCrossRefGoogle Scholar
  83. 83.
    Swerlick, R. A., K. H. Lee, T. M. Wick, and T. J. Lawley. 1992. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J. Immunol. 148(1):78–83.PubMedGoogle Scholar
  84. 84.
    Tang, S., K. C. Le-Ruppert, and V. P. Gabel. 1994. Expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on proliferating vascular endothelial cells in diabetic epiretinal membranes. Br. J. Ophthal. 78:370–376.CrossRefGoogle Scholar
  85. 85.
    Tobise, K., Y. Ishikawa, S. R. Holmer, M. Im, J. B. Newell, H. Yoshie, M. Fujita, E. E. Susannie, and C. J. Homey. 1994. Changes in type VI adenylyl cyclase isoform expression correlate with a decreased capacity for cAMP generation in the aging ventricle. Circ. Res. 74:596–603.PubMedGoogle Scholar
  86. 86.
    Tsopanoglou, N. E., E. Pipili-Synetos, and M. E. Maragoudakis. 1993. Protein kinase C involvement in the regulation of angiogenesis. J. Vase. Res. 30:202–208.CrossRefGoogle Scholar
  87. 87.
    Vigne, P., G. Champigny, R. Marsault, P. Barbry, C. Frelin, and M. Lazdunski. 1989. A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J. Biol. Chem. 264:7663–7668.PubMedGoogle Scholar
  88. 88.
    Voyta, J. C., D. P. Via, C. E. Butterfield, and B. R. Zetter. 1984. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040.PubMedCrossRefGoogle Scholar
  89. 89.
    Warren, J. B. and R. K. Loi. 1995. Captopril increases skin microvascular blood flow secondary to bradykinin, nitric oxide, and prostaglandins. FASEB J. 9:411–418.PubMedGoogle Scholar
  90. 90.
    Watanabe, H., W. Kuhne, P. Schwartz, and H. M. Piper. 1992. A2-adenosine receptor stimulation increases macromolecule permeability of coronary endothelial cells. Am. J. Physiol. 262:H1174–H1181.PubMedGoogle Scholar
  91. 91.
    Wojta, J., M. Gallicchio, H. Zoellner, E. L. Filonzi, J. A. Hamilton, and K. McGrath. 1993. Interleukin-4 stimulates expression of urokinase-type-plasminogen activator in cultured human foreskin microvascular endothelial cells. Blood 81:3285–3292.PubMedGoogle Scholar
  92. 92.
    Yamamoto, C., T. Kaji, M. Furuya, M. Sakamoto, H. Kozuka, and F. Koizumi. 1994. Basic fibroblast growth factor suppresses tissue plasminogen activator release from cultured human umbilical vein endothelial cells but enhances that from cultured human aortic endothelial cells. Thromb. Res. 73:255–263.PubMedCrossRefGoogle Scholar
  93. 93.
    Zetter, B.R. 1988. Endothelial heterogeneity: influence of vessel size, organ localization, and species specificity on the properties of cultured endothelial cells. In Endothelial cells: volume II. U.S. Ryan, editor. CRC Press, Boca Raton, FL. 63–79.Google Scholar
  94. 94.
    Zink, S., P. Rösen, B. Sackmann, and H. Lemoine. 1993. Regulation of endothelial permeability by ß-adrenoceptor agonists: contribution of ß 1- and ß 2-adrenoceptors. Biochim. Biophys. Acta 1178:286–298.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Vangelis G. Manolopoulos
    • 1
    • 3
  • Matthew Silverman
    • 1
  • Shaosong Zhang
    • 1
  • Soverin Karmiol
    • 2
  • Brian R. Unsworth
    • 3
  1. 1.Lab. Cell Biology, Milwaukee Clinical CampusUniv. Wisconsin Med SchoolMilwaukeeUSA
  2. 2.Clonetics CorporationSan DiegoUSA
  3. 3.Dept. BiologyMarquette UniversityMilwaukeeUSA

Personalised recommendations