Advertisement

The Electrochemical Activation of Catalytic Reactions

  • Constantinos G. Vayenas
  • Milan M. Jaksic
  • Symeon I. Bebelis
  • Stylianos G. Neophytides
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 29)

Abstract

The use of electrochemistry to activate and precisely tune heterogeneous catalytic processes is a new development1-7 which originally emerged due to the existence of solid electrolytes. Depending on their composition, these specific anionic or cationic conductor materials exhibit substantial electrical conductivity at temperatures between 25 and 1000°C. Within this broad temperature range, which covers practically all heterogeneous catalytic reactions, solid electrolytes can be used as reversible in situ promoter donors or poison acceptors to affect the catalytic activity and product selectivity of metals deposited on solid electrolytes in a very pronounced, reversible, and, to some extent, predictable manner.

Keywords

Solid Electrolyte Electrochemical Activation Catalyst Potential Catalyst Film Faradaic Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Vayenasfn, S. Bebelis, and S. Neophytides, J. Phys. Chem. 92 (1988) 5083.Google Scholar
  2. 2.
    S. Bebelis and C. G. Vayenas, J. Catal 118 (1989) 125.Google Scholar
  3. 3.
    C. G. Vayenas, S. Bebelis, and S. Ladas, Nature (London) 343 (1990) 625. Google Scholar
  4. 4.
    C. G. Vayenas, S. Bebelis, I. V Yentekakis, and H.-G. Lintz, Catal. Today 11 (1992) 303.Google Scholar
  5. 5.
    J. Pritchard, Nature (London) 343 (1990) 592.Google Scholar
  6. 6.
    J. O’M. Bockris and Z. S. Minevski, Elektrochim. Acta 39 (1994) 1471.Google Scholar
  7. 7.
    I. V. Yentekakis, G. Moggridge, C. G. Vayenas, and R. M. Lambert, J. Catal 146 (1994) 293.Google Scholar
  8. 8.
    S. Neophytides, D. Tsiplakides, P. Stonehart, M. M. Jaksic, and C. G. Vayenas, Nature (London) 370 (1994) 45.Google Scholar
  9. 9.
    C. Wagner, Adv. Catal 21 (1970) 323.Google Scholar
  10. 10.
    C. G. Vayenas and H. M. Saltsburg, J. Catal. 57 (1979) 296.Google Scholar
  11. 11.
    S. Pancharatnam, R. A. Huggins, and D. M. Mason, J. Electrochem. Soc. 122 (1975) 869.Google Scholar
  12. 12.
    C. G. Vayenas and R. D. Fair, Science 208 (1980) 593.Google Scholar
  13. 13.
    M. Stoukides and C. G. Vayenas, J. Catal 70(1981) 137; J. Electrochem. Soc. 131 (1984) 839.Google Scholar
  14. l4.
    I. V. Yentekakis and C. G. Vayenas, J. Catal 111 (1988) 170. Google Scholar
  15. 15.
    T. I. Politova, V. A. Sobyanin, and V. D. Belyaev, React. Kinet. Catal. Lett. 41 (1990) 321.Google Scholar
  16. 16.
    A. Marina and V. A. Sobyanin, Catal Lett. 13 (1992) 61.Google Scholar
  17. 17.
    C. A. Cavalca, G. Larsen, C. G. Vayenas, and G. L. Haller, J. Phys. Chem. 97 (1993) 6115.Google Scholar
  18. 18.
    L. Basini, C. A. Cavalca and G. L. Haller, J. Phys. Chem. 98 (1994) 10853; C. A. Cavalca, Ph.D. Thesis, Yale Univ. (1995).Google Scholar
  19. 19.
    I. Harkness and R. M. Lambert, J. Catal 152 (1995) 211.Google Scholar
  20. 20.
    P. C. Chiang, D. Eng, and M. Stoukides, J. Catal. 139 (1993) 683.Google Scholar
  21. 21.
    E. Varkaraki, J. Nicole, E. Plattner, Ch. Comninellis, and C. G. Vayenas, J. of Applied Electrochem. 25(1995) 978.Google Scholar
  22. 22.
    C. G. Vayenas, S. Bebelis, S. Neophytides, and I. V. Yentekakis, Appl. Phys. (A) 49 (1989) 95.Google Scholar
  23. 23.
    C. G. Vayenas, S. Bebelis, I. V. Yentekakis, P. Tsiakaras, and H. Karasali, Platinum Met. Rev. 34(3) (1990) 122.Google Scholar
  24. 24.
    C. G. Vayenas, S. Bebelis, and C. Kyriazis, Chemtech 21 (1991) 500.Google Scholar
  25. 25.
    C. G. Vayenas, in Elementary Reaction Steps in Heterogeneous Catalysis, Ed. by R. W. Joyner and R. A. van Santen, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 73–92.Google Scholar
  26. 26.
    C. G. Vayenas, S. Bebelis, I. V. Yentekakis, Ch. Karavasilis, and Y. Jiang, Solid State Ionics 72(1994) 321.Google Scholar
  27. 27.
    C. G. Vayenas, S. Ladas, S. Bebelis, I. V. Yentekakis, S. Neophytides, Y. Jiang, Ch. Karavasilis, and C. Pliangos, Electrochim. Acta 39 (1994) 1849.Google Scholar
  28. 28.
    C. G. Vayenas, Solid State Ionics 28–30 (1988) 1521.Google Scholar
  29. 29.
    M. Stoukides, Ind. Eng. Chem. Res. 27 (1988) 1745.Google Scholar
  30. 30.
    P. J. Gellings, H. S. A. Koopmans, and A. J. Burgraaf, Appl. Catal 39 (1988) 1.Google Scholar
  31. 31.
    H.-G. Lintz and C. G. Vayenas, Angew. Chem. 101 (1989) 725; Angew. Chem., Int. Ed. Engl. 28 (1989) 708.Google Scholar
  32. 32.
    C. Wagner and W. Schottky, Z Phys. Chem. Bll (1930) 163.Google Scholar
  33. 33.
    H. Rickert, Electrochemistry of Solids, Springer-Verlag, Berlin, 1982.Google Scholar
  34. 34.
    G. C. Farrington, B. Dunn, and J. C. Thomas, in High Conductivity Solid Ionic Conductors, Ed. by T. Takahashi, World Scientific, Singapore, 1989.Google Scholar
  35. 35.
    E. C. Subbarao and H. S. Maiti, Solid State Ionics 11 (1984) 317.Google Scholar
  36. 36.
    D. F. Schriver and G. C. Farrington, Chem. Eng. News 1985 (May 20) Google Scholar
  37. 37.
    W. Göpel, Sensors and Actuators B 18–19 (1994) 1.1Google Scholar
  38. 38.
    F. Grosz, in Proceedings of the 2nd International Symposium on Solid Oxide Fuel Cells, Athens, Greece, CEC Publ., Luxembourg, 1991, pp. 7–24.Google Scholar
  39. 39.
    H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Solid State Ionics 3–4 (1981) 359.Google Scholar
  40. 40.
    S. Neophytides and C. G. Vayenas, J. Catal 118 (1989) 147.Google Scholar
  41. 41.
    C. G. Vayenas and S. Neophytides, J. Catal 127 (1991) 645.Google Scholar
  42. 42.
    C. G. Vayenas, S. Bebelis, and M. Despotopoulou, J. Catal 128 (1991) 415.Google Scholar
  43. 43.
    S. Bebelis and C. G. Vayenas, J. Catal 138 (1992) 588; 138 (1992) 570.Google Scholar
  44. 44.
    P. Tsiakaras and C. G. Vayenas, J. Catal 140 (1993) 53.Google Scholar
  45. 45.
    P. Tsiakaras and C. G. Vayenas, J. Catal 144 (1993) 333.Google Scholar
  46. 46.
    C. G. Vayenas, A. Ioannides, and S. Bebelis, J. Catal 129 (1991) 67.Google Scholar
  47. 47.
    I. V. Yentekakis and S. Bebelis, J. Catal 137 (1992) 278.Google Scholar
  48. 48.
    C. Pliangos, I. V. Yentekakis, X. E. Verykios, and C. G. Vayenas, J. Catal 154 (1995) 124.Google Scholar
  49. 49.
    A. Kaloyannis and C. G. Vayenas, J. Catal, submitted.Google Scholar
  50. 50.
    Ch. Karavassilis, S. Bebelis, and C. G. Vayenas, J. Catal, submitted.Google Scholar
  51. 51.
    H. Karasali, S. Bebelis, and C. G. Vayenas, J. Catal manuscript in preparation.Google Scholar
  52. 52.
    S. Neophytides, S. Bebelis, and C. G. Vayenas, Proceedings of the 1st European Solid Oxide Fuel Cell Forum, Ed. U. Bossel, J. Kinzel Publ., Lucerne, Switzerland (1994), Vol 1, pp. 197–206.Google Scholar
  53. 530.
    A. Marina, V. A. Sobyanin, and V. D. Belyaev, Materials Sei and Engineering B13 (1992) 153.Google Scholar
  54. 54.
    A. Mar’ina, V. A. Sobyanin, V. D. Belyaev, and V. N. Parmon, Catal Today 13 (1992) 567.Google Scholar
  55. 55.
    S. Neophytides, D. Tsiplakides, O. Enea, M. M. Jaksic, and C. G. Vayenas, Electrochim. Acta, manuscript in preparation.Google Scholar
  56. 56.
    I. V. Yentekakis and C. G.Vayenas, J. Catal 149 (1994) 238.Google Scholar
  57. 57.
    N. A. Anastasijevic, H. Baltruschat, and J. Heitbaum, Electrochim. Acta 38 (1993) 1067.Google Scholar
  58. 58.
    C. G. Vayenas, C. Georgakis, J. N. Michaels, and J. Tormo, J. Catal. 67 (1981) 348.Google Scholar
  59. 59.
    S. Ladas, S. Bebelis, and C. G. Vayenas, Surf. Sei. 251/252 (1991) 1062–1069.Google Scholar
  60. 60.
    Y. Jiang, I. V. Yentekakis, and C. G. Vayenas, J. Catal. 148 (1994) 240.Google Scholar
  61. 61.
    B. C. H. Steele, in Electrode Processes in Solid State Ionics, Ed. by M. Kleitz and J. Dupuy, Reidel, Dordrecht, The Netherlands, 1976.Google Scholar
  62. 62.
    J. N. Michaels, C. G. Vayenas, and L. L. Hegedus, J. Electrochem. Soc. 133 (1985) 552.Google Scholar
  63. 63.
    S. C. Singhal and H. Iwahara, eds., Proceedings of the 3rd International Symposium on Solid Oxide Fuel Cells, Vol. 93–94, The Electrochemical Society, Pennington, New Jersey, 1993.Google Scholar
  64. 64.
    R. D. Fair and C. G. Vayenas, J. Electrochem. Soc. 127, (1980) 1478.Google Scholar
  65. 65.
    C. Sigal and C. G. Vayenas, Solid States Ionics 5 (1981) 567.Google Scholar
  66. 66.
    C. G. Vayenas, S. Bebelis, and C. C. Kyriazis, Chemtech 21 (1991) 422; 21 (1991) 500.Google Scholar
  67. 67.
    I. V. Yentekakis and C. G. Vayenas, J. Electrochem. Soc. 136 (1989) 996.Google Scholar
  68. 68.
    S. Neophytides and C. G. Vayenas, J. Electrochem. Soc. 137 (1990) 834.Google Scholar
  69. 69.
    Y. Jiang, I. V. Yentekakis, and C. G. Vayenas, Science 264 (1994) 1563.Google Scholar
  70. 70.
    N. Kiratzis and M. Stoukides, J. Electrochem. Soc. 134 (1987) 1925.Google Scholar
  71. 71.
    J. N. Michaels and C. G. Vayenas, J. Catal. 85 (1987) 477.Google Scholar
  72. 72.
    J. N. Michaels and C. G. Vayenas, J. Electrochem. Soc. 131 (1984) 2544.Google Scholar
  73. 73.
    R. DiCosimo, J. D. Burrington, and R. K. Grasselli, J. Catal. 102 (1986) 234.Google Scholar
  74. 74.
    E. J. L. Schouler, M. Kleitz, E. Forest, E. Fernandez, and P. Fabry, Solid State Ionics 3–4 (1981) 431.Google Scholar
  75. 75.
    T. M. Giir and R. A. Huggins, J. Electrochem. Soc. 126 (1979) 1067.Google Scholar
  76. 76.
    T. M. Giir and R. A. Huggins, Science 219 (1983) 967.Google Scholar
  77. 77.
    T. M. Giir and R. A. Huggins, J. Catal. 102 (1986) 443.Google Scholar
  78. 78.
    T. Hayakawa, T. Tsunoda, H. Orita, T. Kameyama, H. Takahashi, K. Takehira, and K. Fukuda, J. Chem. Soc. Jpn. Chem. Commun. 1986,961.Google Scholar
  79. 79.
    K. Otsuka, S. Yokoyama, and A. Morikawa, Chem. Lett. Chem. Soc. Jpn. 1985, 319.Google Scholar
  80. 80.
    S. Seimanides and M. Stoukides, J. Electrochem. Soc. 133 (1986) 1535.Google Scholar
  81. 81.
    K. Otsuka, K. Suga, and I. Yamanaka, Catal. Lett. 1 (1988) 423.Google Scholar
  82. 82.
    K. Otsuka, K. Suga, and I. Yamanaka, Chem. Lett. Jpn. 1988, 317.Google Scholar
  83. 83.
    V. D. Belyaev, O. V. Bazhan, V. A. Sobyanin, and V. N. Parmon, in New Developments in Selective Oxidation, Ed. by G. Centi and F. Trifiro, Elsevier, Amsterdam, 1990, p. 469.Google Scholar
  84. 84.
    D. Eng and M. Stoukides, Catal.-Rev.-Sci.-Eng. 33 (1991) 375.Google Scholar
  85. 85.
    D. Eng and M. Stoukides, J. Catal. 30 (1991) 306.Google Scholar
  86. 86.
    P. H. Chiang, D. Eng, and M. Stoukides, J. Electrochem. Soc. 138 (1991) Lll.Google Scholar
  87. 87.
    W. Dönitz and E. Erdle, Int. J. Hydrogen Energy 10 (1985) 291.Google Scholar
  88. 88.
    D. Eng and M. Stoukides, Catal. Lett. 9 (1991) 47.Google Scholar
  89. 89.
    P. Tsiakaras, Ph.D. Thesis, University of Patras, 1993.Google Scholar
  90. 90.
    D. Y. Wang and A. S. Nowick, J. Electrochem. Soc. 126 (1979) 1155.Google Scholar
  91. 91.
    D. Y. Wang and A. S. Nowick, J. Electrocliem. Soc. 126 (1979) 1166.Google Scholar
  92. 92.
    D. Y. Wang and A. S. Nowick, J. Electrochem. Soc. 128 (1981) 55.Google Scholar
  93. 93.
    E. J. L. Schouler and M. Kleitz, J. Electrochem. Soc. 134 (1987) 1045.Google Scholar
  94. 94.
    H. H. Hildenbrand and H.-G. Lintz, Catal. Today 9 (1991) 153.Google Scholar
  95. 95.
    H. Okamoto, G. Kawamura, and T. Kudo, J. Catal. 82 (1983) 322.Google Scholar
  96. 96.
    C. G. Vayenas, J. Catal. 90 (1984) 371.Google Scholar
  97. 97.
    J. Tafel, Z Phys. Chem. (Leipzig) 50 (1905) 641.Google Scholar
  98. 98.
    J. A. V. Butler, Trans. Faraday Soc. 19 (1924) 729.Google Scholar
  99. 99.
    T. Erdey-Gruz and M. Volmer, Z. Phys. Chem. (Leipzig)150 (1930) 203.Google Scholar
  100. 100.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York, 1970.Google Scholar
  101. 101.
    J. O’M. Bockris and S. U. M. Khan, Surface Electrochemistry: A Molecular Level Approach, Plenum Press, New York, 1993.Google Scholar
  102. 102.
    J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.Google Scholar
  103. 103.
    M. Manton, Ph.D. Thesis, MIT, 1986.Google Scholar
  104. 104.
    C. G. Vayenas and J. N. Michaels, Surf Sei. 120 (1982) L405.Google Scholar
  105. 105.
    M. Peukert and H. P. Bonzel, Surf. Sei. 145 (1984) 239.Google Scholar
  106. 106.
    M. Peukert and H. Ibach, Surf. Sei. 136 (1983) 319.Google Scholar
  107. 107.
    Y. Jiang, A. Kaloyannis, and C. G. Vayenas, Electrochim. Acta38 (1993) 2533.Google Scholar
  108. 108.
    H. J. Reiss, J. Phys. Chem. 89 (1985) 3783.Google Scholar
  109. 109.
    H. J. Reiss, J. Electrochem. Soc. 135 (1988) 2476.Google Scholar
  110. 110.
    P. M. Gundry and F. C. Tompkins, in Experimental Methods in Catalyst Research, Ed. By R. B. Anderson, Academic Press, New York, 1968, pp. 100–168.Google Scholar
  111. 111.
    J. Hölzl and F. K. Schulte, in Solid Surface Physics, Ed. by G. Höhler, and E. Niekisch, Springer-Verlag, Berlin, 1979, pp. 1–150.Google Scholar
  112. 112.
    S. Trasatti, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 10, Ed. by H. Gerischer and C. W. Tobias, John Wiley & Sons, New York, 1977.Google Scholar
  113. 113.
    H. Amariglio, J. Chim. Phys. 64 (1967) 1391.Google Scholar
  114. 114.
    N. W. Ashcroft and N. D. Mermin, in Solid State Physics, Hott-Saunders Intl. Eds., Philadelphia, USA, 1976, pp. 354–371.Google Scholar
  115. 115.
    C. Lamy, in Propriétés Electriques des Interfaces Chargées, Ed. by D. Schuhmann, Masson, Paris, 1978, pp. 210–241.Google Scholar
  116. 116.
    W. Schröder and J. Hölzl, Solid State Commun. 24 (1977) 777.Google Scholar
  117. 117.
    C. A. Papageorgopoulos and J. M. Chen, Surf. Sei. 52 (1975) 40.Google Scholar
  118. 118.
    H. P. Bonzel, Surf. Sei. Rep. 8 (1987) 43.Google Scholar
  119. 119.
    D. Heskett, Surf. Sei. 199 (1988) 67.Google Scholar
  120. 120.
    T. Aruga and Y. Murata, Prog. Surf. Sei. 31 (1989) 61.Google Scholar
  121. 121.
    K. J. Uram, L. Ng, and J. R. Yates, Jr., Surf. Sei. 177 (1986) 253.Google Scholar
  122. 122.
    T. Arakawa, A. Saito, and J. Shiokawa, Appl Surf. Sei. 16 (1983) 365.Google Scholar
  123. 123.
    T. Arakawa, A. Saito, and J. Shiokawa, Chem. Phys. Lett. 94 (1983) 250.Google Scholar
  124. 124.
    U. Vóhrer, Ph.D. Thesis, University of Tübingen, 1992.Google Scholar
  125. 125.
    S. Ladas, S. Kennou, S. Bebelis, and C. G. Vayenas, J. Phys. Chem. 97 (1993) 8845.Google Scholar
  126. I. V. Yentekakis and C. G. Vayenas, manuscript in preparation.Google Scholar
  127. 127.
    M. Boudart and G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press, Princeton, New Jersey, 1984.Google Scholar
  128. 128.
    Z. Xu, J. T. Yates, Jr., L. C. Wang, and H. J. Kreuzer, J. Chem. Phys. 96 (1991) 1628.Google Scholar
  129. 129.
    S. Neophytides and C. G. Vayenas, Ionics 1 (1995) 80; J. Phys. Chem. 1995, in press.Google Scholar
  130. 130.
    J. L. Falconer and R. J. Madix, Surf. Sei. 48 (1975) 393.Google Scholar
  131. 131.
    C. G. Vayenas, B. Lee, and J. N. Michaels, J. Catal66 (1980) 36.Google Scholar
  132. 132.
    V. A. Sobyanin, V. I. Sobolev, V. D. Belyaev, O. A. Mar’ina, A. K. Demin, and A. S. Lipilin, Catal Lett. 18 (1993)153.Google Scholar
  133. 133.
    V. A. Sobyanin and V. D. Belyaev, React. Kinet. Catal. Lett. 51(2) (1993) 373.Google Scholar
  134. 134.
    M. Boudart, J. Am. Chem. Soc. 74 (1952) 3556.Google Scholar
  135. 135.
    S. Cerny and V. Ponec, Catal Rev. 2 (1968) 249.Google Scholar
  136. 136.
    E. Shustorovich, J. Mol. Catal54 (1989) 307.Google Scholar
  137. 137.
    G. Pacchioni, F. Ilias, S. Neophytides, and CG. Vayenas, manuscript in preparation.Google Scholar
  138. 138.
    S. Neophytides, D. Tsiplakides, P. Stonehart, M. M. Jaksic, and C. G. Vayenas, Electrochim. Acta, submitted, 1995.Google Scholar
  139. 139.
    E. Cremer, Adv. Catal. 7 (1955) 75.Google Scholar
  140. 140.
    G.-M. Schwab, J. Catal. 84 (1983) 1.Google Scholar
  141. 141.
    S. Seimanides, P. Tsiakaras, X. E. Verykios, and C. G. Vayenas, Appl. Catal. 68 (1991) 41.Google Scholar
  142. 142.
    V D. Belyaev, V. A. Sobyanin, A. K. Demin, A. S. Lipilin, and V. A. Zapesotski, Mendeleev Commun. 1991, 53.Google Scholar
  143. 143.
    H. Karasali and C. G. Vayenas, Mater. Sei. Forum76 (1991) 171.Google Scholar
  144. 144.
    D. Lackey and P. A. King, J. Chem. Soc, Faraday Trans. 1 1987, 83.Google Scholar
  145. 145.
    I. V. Yentekakis, S. Neophytides, and C. G. Vayenas, J. Catal67 (1981) 348.Google Scholar
  146. 146.
    S. Ladas, R. Imbihl, and G. Eni, Surf. Sei. 219 (1989) 88.Google Scholar
  147. 147.
    Ch. Karavasilis, S. Bebelis, and C. G. Vayenas, Mater. Sei. Forum76 (1991) 175.Google Scholar
  148. 148Ch. Karavasilis, S. Bebelis, and C. G. Vayenas, J. Catal, submitted, 1995, in press.Google Scholar
  149. 149.
    R. A. Van Santen and H. P. C. E. Kuipers, Adv. Catal. 35 (1987) 265.Google Scholar
  150. 150.
    R. B. Grant and R. M. Lambert, J. Catal92 (1985) 364.Google Scholar
  151. 151.
    H. Karasali, Ph.D. Thesis, University of Patras, 1994.Google Scholar
  152. 152.
    H. Alqahtany, P.-H. Chiang, D. Eng, M. Stoukides, and A. R. Robbat, Catal. Lett. 13 (1992) 289.Google Scholar
  153. 153.
    E. Lamy-Pitara, L. Bencharif, and J. Barbier, Appl Catal18 (1985) 117.Google Scholar
  154. 154.
    C. Pliangos, I. V. Yentekakis, X. E. Verykios, and C. G. Vayenas, J. Catal. 154 (1995) 124.Google Scholar
  155. 155.
    G. L. Haller and D. E. Resasco, Adv. Catal. 36 (1989) 173.Google Scholar
  156. 156.
    S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc. 100 (1978) 170.Google Scholar
  157. 157.
    H. Baltruschat, N. A. Anastasijevic, M. Beltowska-Brzezinska, G. Hambitzer, and J. Heitbaum, Ber. Bunsenges. Phys. Chem. 94 (1990) 996.Google Scholar
  158. 158.
    S. Neophytides, D. Tsiplakides, P. Stonehart, M. Jaksic, and C. G. Vayenas, Electrochim. Acta, submitted, 1995.Google Scholar
  159. 159.
    B. E. Conway, in Electrodes of Conductive Metallic Oxides, Ed. by S. Trassatti, Elsevier, Amsterdam, 1981, Chapter 9.Google Scholar
  160. 160.
    B. E. Conway and B. K. Tilak, Adv. Catal. 38 (1992) 1.Google Scholar
  161. 161.
    E. Plattner and Ch. Comninellis, in Process Technologies for Water Treatment, Ed. by S. Stucki, Plenum Press, New York, 1988, pp. 205–217.Google Scholar
  162. 162.
    D. L. Rath and D. M. Kolb, Surface Science109 (1981) 641.Google Scholar
  163. 163.
    E. R. Kotz, H. Neff, and K. Müller, J. Electroanal Chem. 215 (1986) 33.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Constantinos G. Vayenas
    • 1
  • Milan M. Jaksic
    • 1
  • Symeon I. Bebelis
    • 1
  • Stylianos G. Neophytides
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations