According to the International Dairy Federation (1988) ‘fermented milk is a milk product prepared from milk, skimmed or not, with specific cultures; the microflora is kept alive until sale to the consumer and may not contain any pathogenic germ’.


Lactic Acid Lactic Acid Bacterium Fermented Milk Lactobacillus Acidophilus Leuconostoc Mesenteroides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, S. (1992) Lactic acid bacteria and tumor control, in Lactic Acid Bacteria in Health and Disease (ed. B.J.B. Wood), Elsevier Applied Science, pp. 233–61.Google Scholar
  2. Arrizza, S., Ledda, A., Sarra, P.G. & Dellaglio, F. (1983) Identification of lactic acid bacteria in ‘Gioddu’. Scienza e Tecnica Lattiera-Casearia, 34 87–102.Google Scholar
  3. Bielecka, M., Majkowska, A. & Biedrzycka, E. (1994) Selection of strains for yogurt starters regarding their antibacterial properties. Polish Journal of Food and Nutrition Sciences, 3/44 51–61.Google Scholar
  4. Bottazzi, V. (1983) Other fermented dairy products, in Biotechnology, Vol. 5 (ed. G. Reed), Verlag Chemie, pp. 315–63.Google Scholar
  5. Chandan, R.C., Gordon, J.F. & Walker, D.A. (1969) Dairy fermentation processes. Process Biochemistry, 4, 13–22.Google Scholar
  6. Chomakov, H. (1973) The dairy industry in the People’s Republic of Bulgaria,booklet, Agricultural Academy, Bulgaria.Google Scholar
  7. Collins, E.B. & Aramaki, K. (1980) Production of hydrogen peroxide by Lactobacillus acidophilus. Journal of Dairy Science, 63, 3–7.Google Scholar
  8. Collins, E.B. & Speckman, R.A. (1974) Influence of acetaldehyde on growth and acetoin production by Leuconostoc citrovorum. Journal of Dairy Science, 57, 1428–31.Google Scholar
  9. Czuzhova, Z. (1958) Lietchebnyj kislomolotchnyj napitok kurunga i jego antibiotitcheskije swoistwa. Molochnaja Promyshlennost, 6, 34–6.Google Scholar
  10. Daeschel, M.A. (1993) Application and interactions of bacteriocins from lactic acid bacteria in foods and beverages, in Bacteriocins of Lactic Acid Bacteria (eds D.G. Hoover & L.R. Steenson), Academic Press, pp. 63–91.Google Scholar
  11. Dahiya, R.S. & Speck, M.L. (1963) Identification of stimulatory factor involved in symbiotic growth of Streptococcus lactis and Streptococcus cremoris. Journal of Bacteriology, 85, 585–9.Google Scholar
  12. Dellaglio, F. (1988) Starters for fermented milks. Bulletin of the International Dairy Federation (IDF), No. 227, pp. 27–34.Google Scholar
  13. Dellaglio, F., Torriani, S., Vlaeminck, G. & Cornet, R. (1992) Specific characteristics of microorganisms used for new fermented milks. Bulletin of the International Dairy Federation (IDF), No. 277, pp. 4–16.Google Scholar
  14. Devrise, L.A. & Pot, B. (1995) The genus Enterococcus, in The Genera of Lactic Acid Bacteria (eds B.J.B. Wood & W.H. Holzapfel), Blackie Academic and Professional Publishers, Glasgow, pp. 327–67.Google Scholar
  15. Dodds, K.L. & Collins-Thompson, D.L. (1984) Incidence of nitrite-depleting lactic acid bacteria in cured meats and in meat starter cultures. Journal of Food Protection, 47, 7–10.Google Scholar
  16. Fernandes, C.F. & Shahani, K.M. (1989) Lactose intolerance and its modulation with lactobacilli and other microbial supplements. Journal of Applied Nutrition, 42, 50–64.Google Scholar
  17. Fernandes, C.F., Chandan, R.C. & Shahani, K.M. (1993) Fermented dairy products and health, in Lactic Acid Bacteria in Health and Disease (ed. B.J.B. Wood), Elsevier Applied Science, pp. 297–339.Google Scholar
  18. Fluckiger, E. (1982) Fermented milks. Bulletin of the International Dairy Federation (IDF), No. 143, pp. 93–7.Google Scholar
  19. Geis, A., Singh, J. & Teuber, M. (1983) Potential lactic streptococci to produce bacteriocin. Applied and Environmental Microbiology,45, 205–11.Google Scholar
  20. Gilliland, S.E. (1989) Acidophilus milk products: a review of potential benefits to consumers. Journal of Dairy Science, 72, 2483–94.Google Scholar
  21. Gilliland, S.E. (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology Reviews, 87, 175–88.Google Scholar
  22. Gilliland, S.E. & Walker, D.K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. Journal of Dairy Science, 73, 905–11.Google Scholar
  23. Gilliland, S.E., Nelson, C.R. & Maxwell, C. (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Applied and Environmental Microbiology, 49, 377–81.Google Scholar
  24. Goldin, B.R. & Gorbach, S.L. (1984) The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. American Journal of Clinical Nutrition,39, 75661.Google Scholar
  25. Gorbach, S.I. (1990) Lactic acid bacteria and human health. Annals of Medicine, 22, 37–41.Google Scholar
  26. Gudkow, A.V. (1986) Starters: as a means of controlling contaminating organisms, in Milk – the Vital Force, Proceedings of the XXII International Dairy Congress, D. Reidel Publishing Company, pp. 83–93.Google Scholar
  27. Gurr, M.I. (1987) Nutritional aspects of fermented milk products. FEMS Microbiology Reviews, 46, 337–42.Google Scholar
  28. Harris, L.J., Fleming, H.P. & Klaenhammer, T.R. (1992) Developments in nisin research. Food Research International, 25, 57–66.Google Scholar
  29. Harvey, R.J. (1960) Production of acetone and acetaldehyde by lactic streptococci. Journal of Dairy Research, 27, 41–5.Google Scholar
  30. Hoier, E. (1993) Zastosowanie probiotycznych szczepionek w produktach mleczarskich. Przeglqd Mleczarski, 7, 51–2.Google Scholar
  31. Hugenholtz, J. (1986) Population dynamics of mixed starter cultures. Netherlands Milk and Dairy Journal, 40, 129–40.Google Scholar
  32. Hugenholtz, J. (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiology Reviews, 12, 165–78.Google Scholar
  33. Hugenholtz, J. & Starrenburg, M.J.C. (1992) Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. Applied Microbiology and Biotechnology, 38, 17–22.Google Scholar
  34. Hunger, W. (1989) Bifidobakterien and Lactobacillus acidophilus für Sauermilchprodukte. Deutsche Mölkerei-Zeitung, 38, 1178–85.Google Scholar
  35. Hunger, W. & Peitersen, N. (1992) New technical aspects of the preparation of starter cultures. Bulletin of the International Dairy Federation (IDF), No. 277, pp. 17–21.Google Scholar
  36. International Dairy Federation (1988) Fermented milks, science and technology. Bulletin of the International Dairy Federation (IDF), No. 227.Google Scholar
  37. International Dairy Federation (1989) Consumption statistics for milk and milk products (1978), Bulletin of the International Dairy Federation (IDF), No. 237.Google Scholar
  38. International Dairy Federation (1994) Consumption statistics for milk and milk products (1992), Bulletin of the International Dairy Federation (IDF), No. 295.Google Scholar
  39. International Dairy Federation (1995) The World dairy situation. Bulletin of the International Dairy Federation (IDF), No. 303.Google Scholar
  40. Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P. & Koivula, T. (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics, 88 90–7.Google Scholar
  41. Jack, R.W., Tagg, J.R. & Ray, B. (1995) Bacteriocins of Gram-positive bacteria. Microbiological Reviews, 59,171–200.Google Scholar
  42. Kamiński, J. (1955) Mikroflora ziaren kefirowych. Przemyst Spozywczy, 9,288–92.Google Scholar
  43. Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49,209–24.Google Scholar
  44. Katrandzijev, K. (1961) Blgarskie kiselo mljako, booklet, Izd. na BAN, Sofia.Google Scholar
  45. Keenan, T.W., Lindsay, R.C. & Day, E.A. (1966) Acetaldehyde utilization by Leuconostoc species. Applied Microbiology, 14,802–6.Google Scholar
  46. Klaenhammer, T.R. (1988) Bacteriocins of lactic acid bacteria. Biochimie, 70,337–49.Google Scholar
  47. Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12 39–86.Google Scholar
  48. Kok, J., Holo, H., Van Belkum, M.J., Haandrikman, A.J. & Nes, I.F. (1993) Non-nisin bacteriocins in Lactococci: biochemistry, genetics, and mode of action, in Bacteriocins of Lactic Acid Bacteria (eds D.G. Hoover & L.R. Steenson), Academic Press, New York, pp. 121–50.Google Scholar
  49. Koroleva, N.S. (1988) Technology of kefir and kumys. Bulletin of the International Dairy Federation (IDF), No. 227, pp. 96–100.Google Scholar
  50. Koroleva, N.S. & Kondratenko, M.S. (1978) Simbioticheskije zakvaski termofilnych bakterii v proizvodstvie kislomolochnyhk produktov. Pishchevaja Promyshlennost, Moskva, Technika, pp. 159–65.Google Scholar
  51. Koroleva, N.S. & Melnikova, E.V. (1973) Primienienie simbioticheskyh zakvasok v proizvodstvie Metchnikoffskoj prostokvashi jogurta i ryazhenki. Molochnaja Promyshlennost, 10, 4–6.Google Scholar
  52. Kosikowski, F.V. (1982) Cheese and Fermented Milk Foods, 2nd edn, Edwards Bros. Inc., Ann Arbor, Michigan.Google Scholar
  53. Kosikowski, F.V. (1984) Buttermilk and related fermented milks. Bulletin of the International Dairy Federation (IDF), No. 179, pp. 116–19.Google Scholar
  54. Kurmann, J.A. (1984) Fermented milks, in Proceedings of the International Dairy Federation Seminar in Avignon (France), Doc. 179, pp. 16–26.Google Scholar
  55. Kurmann, J.A. (1988) Starters with selected intestinal bacteria. Bulletin of the International Dairy Federation (IDF), No. 227, pp. 41–55.Google Scholar
  56. Kurmann, J.A. & Rasic, J.Lj. (1988) Technology of fermented special products. Bulletin of the International Dairy Federation (IDF), No. 227, pp. 101–14.Google Scholar
  57. Lawrence, R.B. & Thomas, T.D. (1979) The fermentation of milk by lactic acid bacteria, in Microbial Technology: Current State, Future Prospects (eds A.T. Bull, D.C. Ellwood & C. Ratledge), Cambridge, University Press, Cambridge, pp. 187–219.Google Scholar
  58. Libudzisz, Z. (1990) Fizjologia i modelowanie układów mieszanych paciorkowców fermentacji mlekowej w hodowlach okresowych i ciągłych. Zeszyty Naukowe Politechniki Łódzkiej-Chemia Spozywcza, 595 5–101.Google Scholar
  59. Libudzisz, Z. & Galewska, E. (1991) Citrate metabolism in Lactococcus lactis subsp. lactis var. diacetylactis strains. Die Nahrung, 35 611–18.Google Scholar
  60. Libudzisz, Z. & Piątkiewicz, A. (1988) Sheep milk and its products in Poland. Dairy Industries International, 53 31–33.Google Scholar
  61. Libudzisz, Z. & Piątkiewicz, A. (1990) Kefir production in Poland. Dairy Industries International, 55 31–33.Google Scholar
  62. Libudzisz, Z., Piątkiewicz, A., Oberman, H. & Ottuszak, E. (1987) Growth kinetic parameters of lactic acid streptococci. FEMS Microbiology Reviews, 46 P95.Google Scholar
  63. Limsowtin, G.K.Y., Heap, H.A. & Lawrence, R.C. (1978) Heterogeneity among strains of lactic streptococci. New Zealand Journal of Dairy Science and Technology,13 1–8.Google Scholar
  64. Lindsay, R.C., Day, E.A. & Sandine, W.E. (1965) Studies on the green flavour defect in lactic starter cultures. Journal of Dairy Science, 48 863–9.Google Scholar
  65. Macura, D. & Townsley, P.M. (1984) Scandinavian ropy milk — identification and characterization of endogenous ropy lactic streptococci and their extracellular extraction. Journal of Dairy Science, 67 735–44.Google Scholar
  66. Mann, G.V. & Spoerry, A. (1974) Studies of a surfactant and cholesteremia in the Massai. American Journal of Clinical Nutrition,27 464–9.Google Scholar
  67. Manus, L.J. (1979) Liquid cultured dairy products. Cultured Dairy Products Journal, 14 9–14Google Scholar
  68. Marshall, V.M. (1984) Flavour development in fermented milks, in Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (eds F.L. Davies & B.A. Law), Elsevier Applied Science, London, pp. 153–86.Google Scholar
  69. Marshall, V.M. (1987) Lactic acid bacteria: starters for flavour. FEMS Microbiology Reviews, 46 327–36.Google Scholar
  70. Marshall, V.M. & Cole, W.M. (1983) Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. Journal of Dairy Research, 50 375–9.Google Scholar
  71. Marteau, P. & Rambaud, J.-C. (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiology Reviews, 12 207–20.Google Scholar
  72. Matuszewski, T. & Supiriska-Jakubowska, J. (1949) Mikrobiologia Mleczarska, Panstwowy Instytut Wydawnictw Rolniczych, Warszawa.Google Scholar
  73. Matuszewski, T., Pijanowski, E. & Supinska, J. (1936) Streptococcus diacetilactis n.sp. i jego zastosowanie przy wyrobie mash. Roczniki Nauk Rolniczych i Lesnych,36 1–28.Google Scholar
  74. McKay, L.L. & Baldwin, K.A. (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiology Reviews, 87 3–14.Google Scholar
  75. Merilainen, V.T. (1984) Microorganisms in fermented milks: other microorganisms. Bulletin of the International Dairy Federation (IDF), No. 179, pp. 89–93.Google Scholar
  76. Metchnikoff, E. (1907) The Prolongation of Life, G.P. Putnam and Sons, The Knickerbocker Press, New York, USA.Google Scholar
  77. Molska, I. (1988) Zarys Mikrobiologii Mleczarskiej, Panstwowe Wydawnictwo Rolnicze i Leine, Warszawa.Google Scholar
  78. Molska, I., Gawkowska, B. & Al-Rawi, T.S. (1981) Charakterystyka mikroflory ziaren kefirowych. Przeglgd Mleczarski, 7 8–10.Google Scholar
  79. Motyl, W., Libudzisz, Z. & Moneta, J. (1995) Przezywalnoie Lactobacillus acidophilus w niekorzystnych warunkach przewodu pokarmowego. XXVI Sesja KTChZ, adz, Poland. Abstract book, p. 295.Google Scholar
  80. Oberman, H. & Libudzisz, Z. (1978) Physiological activity of Streptococcus diacetilactis and Lactobacillus casei strains in continuous culture system. Acta Alimentaria Polonica, IV 201–15Google Scholar
  81. Oberman, H. & Libudzisz, Z. (1980) Population changes of lactic acid bacteria grown in continuous culture. Continuous Cultivation of Microorganisms,Proceedings of the 7th Symposium, Prague, pp. 619–28.Google Scholar
  82. Oberman, H., Piątkiewicz, A. & Libudzisz, Z. (1981) Deep frozen storage of single and mixed culture of lactic acid bacteria. 4th International Conference on Culture Collections, Brno, Abstract P 18.Google Scholar
  83. Oberman, H., Piątkiewicz, A. & Libudzisz, Z. (1982) Production of diacetyl and acetoin by lactic acid bacteria. Die Nahrung, 26 615–23.Google Scholar
  84. Orla-Jensen, S. (1919) The Lactic Acid Bacteria, Andr. Fred. Host & Son, Copenhagen.Google Scholar
  85. Piątkiewicz, A., Libudzisz, Z., Janakiewicz, H. & Obarek, I. (1990) Sktad chemiczny oraz jakoie mikrobiologiczna mleka dostarczanego do 1ödzkiej Spotdzielni Mleczarskiej. Zeszyty Naukowe Politechniki L6dzkiej-Chemia Spozywcza, 43 107–18.Google Scholar
  86. Pijanowski, E. (1974) Zarys Chemii i Technologii Mleczarstwa, v. II Panstwowe Wydawnictwo Rolnicze i Leine, Warszawa.Google Scholar
  87. Pochart, P., Dewit, O., Desjeux, J.F. & Bourlioux, P. (1989) Viable starter culture, ßgalactosidase activity and lactose in duodenum after yogurt ingestion in lactase-deficient humans. American Journal of Clinical Nutrition, 49 828–31.Google Scholar
  88. Pritchard, G.G. & Coolbear, T. (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiology Reviews, 12 179–206.Google Scholar
  89. Puhan, Z., Flueler, O. & Banhegyi, M. (1974) Composition of lactic acid bacterial flora and lactic acid configuration in commercial Swiss yogurt. Proceedings of the XIX International Dairy Congress,IE 451.Google Scholar
  90. Rasic, J.Lj. (1990) Culture media for detection and enumeration of bifidibacteria in fermented milk products. Bulletin of the International Dairy Federation (IDF),No. 252, pp. 24–31.Google Scholar
  91. Rasic, J.Lj. & Kurmann, J.A. (1978) Yoghurt. Scientific Grounds, Technology, Manufacture and Preparations, Technical Dairy Publishing House, Vanlose, Copenhagen.Google Scholar
  92. Raya, R.R., Manca De Nadra, M.C., Pesce De Ruiz Holgado, A. & Oliver, G. (1986) Acetaldehyde metabolism in lactic acid bacteria. Milchwissenschaft, 41 397–9.Google Scholar
  93. Reddy, G.V., Shahani, K.M. & Kulkarni, S.M. (1976) B-complex vitamins in cultured and acidified yogurt. Journal of Dairy Science, 59 191–5.Google Scholar
  94. Romanskaya, N.N., Bashkirova, R.S., Dyment, G.S., Tovachevskaya, L.D. & Kochubey, S.I. (1982) Improvement of low-fat cultured milk products. XXI International Dairy Congress, Moscow, Brief Communications, Vol. 1, book 1, p. 306.Google Scholar
  95. Rusoff, L.L. (1987) Calcium — osteoporosis and blood pressure. Journal of Dairy Science, 70 407–13.Google Scholar
  96. Schulz, M.E. (1966) Die Technologie der Haltbarmachung von Sauren Milchprodukten. Milchwissenschaft, 21 68–80.Google Scholar
  97. Secomska, B. & Nadolna, I. (1987) Wptyw warunk6w przechowywania na zachowanie sig ryboflawiny w mleku konsumpcyjnym i kefirze. Przemyst Spoiywczy, 11 320–2.Google Scholar
  98. Shahani, K.M. & Chandan, R.C. (1979) Nutritional and healthful aspects of cultured and culture-containing dairy foods. Journal of Dairy Science, 62 1685–94.Google Scholar
  99. Shigayeva, M.Kh. & Ospanova, M.Sh. (1982) New starters for koumiss preparation. XXI International Dairy Congress, Moscow, Brief Communications,Vol. 1, book 1, p. 308.Google Scholar
  100. Simone De, C., Salvadori, B., Jirillo, E., Baldinelli, L., Bitonti, F. & Vesely, R. (1989) Modulation of immune activities in humans and animals by dietary lactic acid bacteria, in Yogurt: Nutritional and Health Properties (ed. R.C. Chandan), NYA, McLean, VA, USA, pp. 20113.Google Scholar
  101. Skrzybska, J. (1949) Mikrobiologiczna i chemiczna ocena kaukaskiego mleka sfermentowanego ‘Maconi’. Przemyst Spoiywczy, III, 7–12.Google Scholar
  102. Speck, M.L. (1976) Interaction among lactobacilli and man. Journal of Dairy Science, 59 33843.Google Scholar
  103. Stoyanova, L.G., Ponomarjova, O.Ja. & Spiridonov, W.A. (1982) Antibiotic properties of koumiss. XXI International Dairy Congress, Moscow, Brief Communications, Vol. 1, book 1, pp. 308–9.Google Scholar
  104. Supinska, J. & Pijanowski, E. (1937) Charakterystyka huculskiej maslanki pod wzglgdem chemicznym i mikrobiologicznym. Roczniki Nauk Rolniczych i Lesnych,38 209–24.Google Scholar
  105. Tamime, A.Y. (1977) Some aspects of the production of yogurt and condensed yogurt. PhD Thesis, University of Reading, UK.Google Scholar
  106. Tamime, A.Y. & Deeth, H.C. (1980) Yoghurt technology and biochemistry. Journal of Food Protection, 43 939–77.Google Scholar
  107. Tamime, A.Y. & Greig, R.I.W. (1979) Some aspects of yogurt technology. Dairy Industries International, 44 8–10.Google Scholar
  108. Tamime, A.Y. & Robinson, R.K. (1978) Some aspects of the production of a concentrated yogurt (Labneh) popular in the Middle East. Milchwissenschaft, 33 209–12.Google Scholar
  109. Tamime, A.Y. & Robinson, R.K. (1985) Yoghurt: Science and Technology, Pergamon Press, Oxford.Google Scholar
  110. Tamime, A.Y. & Robinson, R.K. (1988) Technology of thermophilic fermented milk. Bulletin of the International Dairy Federation (IDF), No. 227, pp. 82–95.Google Scholar
  111. Tamime, A.Y., Marshall, V.M. & Robinson, R.K. (1995) Microbiological and technological aspects of milks fermented by bifidobacteria. Journal of Dairy Science, 62 151–87.Google Scholar
  112. Teply, M. (1970) Nouvelle culture mixte pour la preparation du yoghourt. Proceedings of the XVIII International Dairy Congress, Sydney, p. 413.Google Scholar
  113. Thomas, T.D. & Pritchard, G.G. (1987) Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews, 46 245–68.Google Scholar
  114. Tomic-Karovic, K. & Faniek, J.J. (1962) Acidophilus milk in therapy of infantile diarrhea caused by pathogenic Escherichia coli. Annales of Pediatry, 199 625–34.Google Scholar
  115. Van’t Veer, P., Dekker, J.M., Lamers, J.W.J., Kok, F.J., Schouten, E.G., Brants, H.A.M., Sturmans, F. & Hermus, R.J.J. (1989) Consumption of fermented milk products and breast cancer: a case-control study in the Netherlands. Cancer Research, 49 4020–3.Google Scholar
  116. Vedamuthu, E.R. (1982) Fermented milks, in Economic Microbiology, Vol. 7 (ed. A.H. Rose), Academic Press, pp. 199–225.Google Scholar
  117. Vedamuthu, E.R. & Neville, J.M. (1986) Involvement of a plasmid in production of ropiness (mucoidess) in milk cultures by Streptococcus cremoris MS. Applied Environmental Microbiology, 51 677–82.Google Scholar
  118. Wituszynska, B. (1989) Zawartoge witamin grupy B w mleku spoiywczym i niektôrych napojach mlecznych. Przemyst Spoiywczy, 9, 242–3.Google Scholar
  119. Yamamoto, N., Akino, A. & Takano, T. (1994) Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Bioscience, Biotechnology and Biochemistry, 58 776–8.Google Scholar
  120. Yaygin, H. (1980) Study of the quality of ayran cultured milk. Dairy Science Abstracts, 42 797.Google Scholar
  121. Zychowicz, C., Suraiynska, A., Siewierska, B. & Cieplinska, T. (1974) Effect of Lactobacillus acidophilus cultures (acidophilus milk) on the carrier state of Shigella and Salmonella organisms in children. Pediatria Polska, 49 997–1003.Google Scholar
  122. Zychowicz, C., Kowalczyk, S. & Cieplibska, T. (1975) Results of administration of Lactobacillus acidophilus culture (acidophilus milk) in an endemic focus of dysentery. Pediatria Polska, 50 429–35.Google Scholar

Copyright information

© Thomson Science 1998

Authors and Affiliations

  • H. Oberman
  • Z. Libudzisz

There are no affiliations available

Personalised recommendations