Advertisement

Gröbner Bases in Integer Programming

  • Rekha R. Thomas
Chapter

Abstract

Recently, application of the theory of Gröbner bases to integer programming has given rise to new tools and results in this field. Here we present this algebraic theory as the natural integer analog of the simplex approach to linear programming Although couched in algebra, the theory of Gröbner bases and its consequences for integer programming are intimately intertwined with polyhedral geometry and lattice arithmetic which are staples of the traditional approach to this subject.

Keywords

Integer Program Monomial Ideal Cost Vector Regular Triangulation Graver Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, American Mathematical Society, Graduate Studies in Math., Vol. I II, 1994.Google Scholar
  2. [2]
    D. Bayer and I. Morrison, Gröbner bases and geometric invariant theory I, Journal of Symbolic Computation Vol. 6 (1988) pp. 209–217.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes, Advances in MathematicsVol. 83 (1990) pp. 155–179.CrossRefMathSciNetGoogle Scholar
  4. [4]
    L.J. Billera, I.M. Gel’fand and B. Sturmfels, Duality and minors of secondary polyhedra, Journal of Combinatorial Theory B Vol. 57 (1993) pp. 258–268.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    L.J. Billera and B. Sturmfels, Fiber polytopes, Annals of Mathematics Vol. 135 (1992) pp. 527–549.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    C.E. Blair and R.G. Jeroslow, The value function of an integer program, Mathematical Programming Vol. 23 (1982) pp. 237–273.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    B. Buchberger, On Finding a Vector Space Basis of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German), Ph.D. Thesis, Univ of Innsbruck, Austria, 1965.Google Scholar
  8. [8]
    P. Conti and C. Traverso, Gröbner bases and integer programming, Proceedings AAECC-9 (New Orleans), Springer Verlag, LNCS Vol. 539 (1991) pp. 130–139.MathSciNetGoogle Scholar
  9. [9]
    W. Cook, A.M.H. Gerards, A. Schrijver and É. Tardos, Sensitivity theorems in integer linear programming, Mathematical Programming Vol. 34 (1986) pp. 251–264.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    G. Cornuejols, R. Urbaniak, R. Weismantel and L. Wolsey, Decomposition of integer programs and of generating sets, Fifth Annual European Symposium on Algorithms (ESA’97), Graz, Austria, 1997. To appear in LNCS, Springer-Verlag.Google Scholar
  11. [11]
    D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, Second edition, Springer-Verlag, New York, 1996.zbMATHGoogle Scholar
  12. [12]
    J. de Loera, B. Sturmfels and R.R.Thomas, Gröbner bases and triangulations of the second hypersimplex, Combinatorica, Vol. 15 (1995) pp. 409–424.CrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributionsAnnals of Statistics,to appear.Google Scholar
  14. [14]
    F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms, Experimental Mathematics, Vol. 4 (1995) pp. 227–234.zbMATHMathSciNetGoogle Scholar
  15. [15]
    W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, New Jersey, 1993.zbMATHGoogle Scholar
  16. [16]
    I.M. Gel’fand, M. Kapranov and A. Zelevinsky, Multidimensional Determinants, Discriminants and Resultants, Birkhäuser, Boston, 1994.CrossRefGoogle Scholar
  17. [17]
    J.E. Graver, On the foundations of linear and integer programming I, Mathematical Programming Vol. 8 (1975) pp. 207–226.CrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Grayson and M. StillmanMacaulay 2: a computer algebra system, available from http://www.math.uiuc.edu/dan/.
  19. [19]
    M.Hayer and W.Hochstättler, personal communication.Google Scholar
  20. [20]
    S. Hosten, Degrees of Gröbner Bases of Integer Programs, Ph. D. Thesis, Cornell University, 1997.Google Scholar
  21. [21]
    S. Hosten and B. Sturmfels, GRIN: An implementation of Gröbner bases for integer programming, in Integer Programming and Combinatorial Optimization (E. Balas and J. Clausen eds.), LNCS Vol. 920 (1995) pp. 267–276.Google Scholar
  22. [22]
    T. Mora and L. Robbiano, The Gröbner fan of an ideal, Journal of Symbolic Computation Vol. 6 (1988) pp. 183–208.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    H.E. Scarf, Neighborhood systems for production sets with indivisibilities, Econometrica Vol. 54 (1986) pp. 507–532.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    A. Schrijver, Theory of Linear and Integer Programming, WileyInterscience Series in Discrete Mathematics and Optimization, New York, 1986.zbMATHGoogle Scholar
  25. [25]
    B. Sturmfels, Gröbner bases of toric varieties, Tôhoku Math. Journal Vol. 43 (1991) pp. 249–261.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    B. Sturmfels, Asymptotic analysis of toric ideals, Memoirs of the Faculty of Science, Kyushu University Ser.A, Vol. 46 (1992) pp. 217–228.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    B. Sturmfels, Gröbner Bases and Convex Polytopes, American Mathematical Society, Providence, RI, 1995.Google Scholar
  28. [28]
    B. Sturmfels and R.R.Thomas, Variation of cost functions in integer programming, Mathematical Programming Vol. 77 (1997) pp. 357–387.zbMATHMathSciNetGoogle Scholar
  29. [29]
    S.R. Tayur, R.R. Thomas and N.R. Natraj, An algebraic geometry algorithm for scheduling in the presence of setups and correlated demands, Mathematical Programming, Vol. 69 (1995) pp. 369–401.zbMATHMathSciNetGoogle Scholar
  30. [30]
    R.R. Thomas, A geometric Buchberger algorithm for integer programming, Mathematics of Operations Research Vol. 20 (1995) pp. 864–884.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    R.R.Thomas and R.Weismantel, Truncated Gröbner bases for integer programming, Applicable Algebra in Engineering, Communication and Computing,to appear.Google Scholar
  32. [32]
    R.Urbaniak, R.Weismantel and G.Ziegler, A variant of Buchberger’s algorithm for integer programming, SIAM J. on Discrete Mathematics, Vol. 1 (1997) pp. 96–108.Google Scholar
  33. [33]
    G. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer Verlag, New York, 1995.CrossRefzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Rekha R. Thomas
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations