Advertisement

Fractional Combinatorial Optimization

  • Tomasz Radzik
Chapter

Abstract

An instance of a fractional combinatorial optimization problem F consists of a specification of a set \(\chi\subseteq{\left\{{0,1}\right\}^p}\), and two functions f : χR and g : χR. The task is to
$$F:maximize\frac{{f(x)}}{{g(x)}},forx \in X$$

Keywords

Span Tree Newton Method Binary Search Fractional Programming Maximum Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. E. Gellman. On a routing problem. Quarterly of Applied Mathematics, 16: 87–90, 1958.MathSciNetGoogle Scholar
  2. [2]
    M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. J. Comp. and Syst. Sci., 7 (4): 448–461, 1973.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    P. J. Carstensen. The Complexity of Some Problems in Parametric,Linear,and Combinatorial Programming. PhD thesis, Department of Mathematics, University of Michigan, Ann Arbor, Michigan, 1983. Doctoral Thesis.Google Scholar
  4. [4]
    R. Chandrasekaran. Minimum ratio spanning trees. Networks, 7: 335–342, 1977.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension. In P. Pardalos, editor, Complexity in Numerical Optimization, pages 74–87. World Scientific, 1993.CrossRefGoogle Scholar
  6. [6]
    E. Cohen and N. Megiddo. Strongly polynomial time and NC algorithms for detecting cycles in dynamic graphs. J. Assoc. Comput. Mach., 40 (4): 791–830, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    R. Cole. Parallel merge sort. SIAM J. Comput., 17 (4): 770–785, August 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.zbMATHGoogle Scholar
  9. [9]
    G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding a cycle in a graph with minimu cost to time ratio with application to a ship routing problem. In P. Rosentiehl, editor, Theory of Graphs, pages 77–84. Gordon and Breach, New York, 1967.Google Scholar
  10. [10]
    W. Dinkelbach. On nonlinear fractional programming. Management Science, 13: 492–498, 1967.CrossRefMathSciNetGoogle Scholar
  11. [11]
    T. R. Ervolina and S. T. McCormick. Two strongly polynomial cut cancelling algorithms for minimum cost network flow. Discrete Applied Math., 46: 133–165, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.zbMATHGoogle Scholar
  13. [13]
    B. Fox. Finding minimal cost-time ratio circuits. Oper. Res., 17: 546–551, 1969.CrossRefGoogle Scholar
  14. [14]
    M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms J. Assoc. Comput. Mach., 34: 596–615, 1987.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Goemans. Personal communication, 1992.Google Scholar
  16. [16]
    A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comput., 24 (3): 494–504, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. J. Assoc. Comput. Mach., 35: 921–940, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. J. Assoc. Comput. Mach., 36: 388–397, 1989.CrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Goldmann On a subset-sum problem. Personal Communication, 1994.Google Scholar
  20. [20]
    D. Gusfield. Sensitivity analysis for combinatorila optimizaton. Technical Report UCB/ERL M90/22, Electronics Research Laboratory, University of California, Berkeley, May 1980.Google Scholar
  21. [21]
    D. Gusfield. Parametric combinatorial computing and a problem of program module distribution. J. Assoc. Comput. Mach.,30(3):551–563, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    S. Hashizume, M. Fukushima, N. Katoh, and T. Ibaraki. Approximation algorithms for combinatorial fractional programming problems. Math. Programming, 37: 255–267, 1987.CrossRefMathSciNetGoogle Scholar
  23. [23]
    T. Ibaraki. Parametric approaches to fractional programs. Math. Programming, 26: 345–362, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    H. Ishii, T. Ibaraki, and H. Mine. Fractional knapsack problems. Math. Programming, 13: 255–271, 1976.CrossRefMathSciNetGoogle Scholar
  25. [25]
    K. Iwano, S. Misono, S. Tezuka, and S. Fujishige. A new scaling algorithm for the maximum mean cut problem. Algorithmica,11(3):243–255, 1994.CrossRefMathSciNetGoogle Scholar
  26. [26]
    R. M. Karp. A Characterization of the minimum cycle mean in a digraph. Discrete Math., 23: 309–311, 1978.zbMATHMathSciNetGoogle Scholar
  27. [27]
    V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. J. Alg., 17 (3): 447–474, 1994.CrossRefMathSciNetGoogle Scholar
  28. [28]
    E. L. Lawler. Optimal cycles in doubly weighted directed linear graphs. In P. Rosentiehl, editor, Theory of Graphs, pages 209–213. Gordon and Breach, New York, 1967.Google Scholar
  29. [29]
    E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.Google Scholar
  30. [30]
    S. T. McCormick. A note on approximate binary search algorithms for mean cuts and cycles. UBC Faculty of Commerce Working Paper 92MSC-021, University of British Columbia, Vancouver, Canada, 1992.Google Scholar
  31. [31]
    N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res., 4: 414–424, 1979.zbMATHMathSciNetGoogle Scholar
  32. [32]
    N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms J. Assoc. Comput. Mach., 30: 852–865, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    C. Haibt Norton, S. A. Plotkin, and É. Tardos. Using separation algorithms in fixed dimension. J. Alg., 13: 79–98, 1992.CrossRefzbMATHGoogle Scholar
  34. [34]
    C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.zbMATHGoogle Scholar
  35. [35]
    P. M. Pardalos and A. T. Phillips. Global optimization of fractional programs. J. Global Opt., 1: 173–182, 1991.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    T. Radzik. Newton’s method for fractional combinatorial optimization. In Proc. 33rd IEEE Annual Symposium on Foundations of Computer Science, pages 659–669, 1992.CrossRefGoogle Scholar
  37. [37]
    T. Radzik. Newton’s method for fractional combinatorial optimization. Technical Report STAN-CS-92–1406, Department of Computer Science, Stanford University, January 1992.Google Scholar
  38. [38]
    T. Radzik. Parametric flows, weighted means of cuts, and fractional combinatorial optimization. In P. Pardalos, editor, Complexity in Numerical Optimization, pages 351–386. World Scientific, 1993.CrossRefGoogle Scholar
  39. [39]
    T. Radzik and A. Goldberg. Tight bounds on the number of minimum-mean cycle cancellations and related results. Algorithmica, 11: 226–242, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    S. Schaible. Fractional Programming 2. On Dinkelbach’s algorithm. Management Sci., 22: 868–873, 1976.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    S. Schaible. A survey of fractional programming. In S. Schaible and W. T. Ziemba, editors, Generalized Concavity in Optimization and Economics, pages 417–440. Academic Press, New York, 1981.Google Scholar
  42. [42]
    S. Schaible. Bibliography in fractional programming Zeitschrift für Operations Res., 26 (7), 1982.Google Scholar
  43. [43]
    S. Schaible. Fractional programming. Zeitschrift für Operations Res., 27: 39–54, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    S. Schaible and T. Ibaraki. Fractional programming Europ. J. of Operational Research, 12, 1983.Google Scholar
  45. [45]
    Y. Shiloach and U. Vishkin. An O(n2 log n) Parallel Max-Flow Algorithm. J. Algorithms, 3: 128–146, 1982.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    S. Toledo. Maximizing non-linear concave functions in fixed dimension. In P. Pardalos, editor, Complexity in Numerical Optimization, pages 429–447. World Scientific, 1993.Google Scholar
  47. [47]
    L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4: 348–355, 1975.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    C. Wallacher. A Generalization of the Minimum-mean Cycle Selection Rule in Cycle Canceling Algorithms. Unpublished manuscript, Institut für Angewandte Mathematik, Technische Universität CaroloWilhelmina, Germany, November 1989.Google Scholar
  49. [49]
    A. C. Yao. An O (| E| log log | V |) algorithm for finding minimum spanning trees. Information Processing Let., 4: 21–23, 1975.CrossRefzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Tomasz Radzik
    • 1
  1. 1.Department of Computer ScienceKing’s College LondonLondonUK

Personalised recommendations