Advertisement

Knapsack Problems

  • David Pisinger
  • Paolo Toth
Chapter

Abstract

Knapsack Problems are the simplest NP-hard problems in Combinatorial Optimization, as they maximize an objective function subject to a single resource constraint. Several variants of the classical 0–1 Knapsack Problem will be considered with respect to relaxations, bounds, reductions and other algorithmic techniques for the exact solution. Computational results are presented to compare the actual performance of the most effective algorithms published.

Keywords

Knapsack Problem Dynamic Programming Algorithm Item Type Lagrangian Relaxation Continuous Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Ahrens and G. Finke (1975), “Merging and Sorting Applied to the Zero-One Knapsack Problem”, Operations Research, 23, 1099–1109.CrossRefzbMATHGoogle Scholar
  2. [2]
    L. Aittoniemi (1982), “Computational comparison of knapsack algorithms”, presented at XIth International Symposium on Mathematical Programming, Bonn, August 23–27.Google Scholar
  3. [3]
    G. d’Atri, C. Puech (1982), “Probabilistic analysis of the subset-sum problem”, Discrete Applied Mathematics, 4, 329–334.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    D. Avis (1980) Theorem 4. In V. Chvâtal, “Hard knapsack problems”, Operations Research, 28, 1410–1411.Google Scholar
  5. [5]
    E. Balas (1975), “Facets of the Knapsack Polytope”, Mathematical Programming, 8, 146–164.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    E. Balas and E. Zemel (1980), “An Algorithm for Large Zero-One Knapsack Problems”, Operations Research, 28, 1130–1154.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    P. Barcia and K. Jörnsten (1990), “Improved Lagrangean decomposition: An application to the generalized assignment problem”, European Journal of Operational Research, 46, 84–92.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    R. E. Bellman (1957), Dynamic programming, Princeton University Press, Princeton, NJ.Google Scholar
  9. [9]
    R. L. Bulfin, R. G. Parker and C. M. Shetty (1979), “Computational results with a branch and bound algorithm for the general knapsack problem”, Naval Research Logistics Quarterly, 26, 41–46.CrossRefzbMATHGoogle Scholar
  10. [10]
    R. E. Burkard and U. Pferschy (1995), “The Inverse-parametric Knapsack Problem”, European Journal of Operational Research, 83 376–393.CrossRefzbMATHGoogle Scholar
  11. [11]
    A. Caprara, D. Pisinger, P. Toth (1997), “Exact Solution of Large Scale Quadratic Knapsack Problems”, Abstracts ISMP’97, EPFL, Lausanne, 24–29 August 1997.Google Scholar
  12. [12]
    A. K. Chandra, D. S. Hirschberg, C. K. Wong (1976), “Approximate algorithms for some generalized knapsack problems”. Theoretical Computer Science, 3, 293–304.CrossRefMathSciNetGoogle Scholar
  13. [13]
    N. Christofides, A. Mingozzi, P. Toth (1979). “Loading Problems”. In N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds.), Combinatorial Optimization, Wiley, Chichester, 339–369.Google Scholar
  14. [14]
    V. Chvâtal (1980), “Hard Knapsack Problems”, Operations Research, 28, 1402–1411.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    T. H. Cormen, C. E. Leiserson and R. L. Rivest (1990), Introduction to Algorithms, MIT Press, Massachusetts.zbMATHGoogle Scholar
  16. [16]
    H. Crowder, E.L. Johnson, M.W. Padberg (1983), “Solving large-scale zero-one linear programming problems”, Operations Research, 31, 803–834.CrossRefzbMATHGoogle Scholar
  17. [17]
    G. B. Dantzig (1957), “Discrete Variable Extremum Problems”, Operations Research, 5, 266–277.CrossRefMathSciNetGoogle Scholar
  18. [18]
    R. S. Dembo and P. L. Hammer (1980), “A Reduction Algorithm for Knapsack Problems”, Methods of Operations Research, 36, 49–60.zbMATHMathSciNetGoogle Scholar
  19. [19]
    B. L. Dietrich and L. F. Escudero (1989), “More coefficient reduction for knapsack-like constraints in 0–1 programs with variable upper bounds”, IBM T.J.,Watson Research Center,RC-14389,Yorktown Heights N. Y.Google Scholar
  20. [20]
    B. L. Dietrich and L. F. Escudero (1989), “New procedures for preprocessing 0–1 models with knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds”, IBM T.J., Watson Research Center, RC-14572, Yorktown Heights N.Y.Google Scholar
  21. [21]
    W. Diffe and M. E. Hellman (1976), “New directions in cryptography”, IEEE Trans. Inf. Theory, IT-36, 644–654.Google Scholar
  22. [22]
    K. Dudzinski (1991), “A note on dominance relations in unbounded knapsack problems”, Operations Research Letters, 10, 417–419.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    K. Dudzinski and S. Walukiewicz (1984), “A fast algorithm for the linear multiple-choice knapsack problem”, Operations Research Letters, 3, 205–209.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    K. Dudzinski and S. Walukiewicz (1987), “Exact Methods for the Knapsack Problem and its Generalizations”, European Journal of Operational Research, 28, 3–21.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    M. E. Dyer (1984), “An O(n) algorithm for the multiple-choice knapsack linear program”, Mathematical Programming, 29, 57–63.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    M. E. Dyer, N. Kayal and J. Walker (1984), “A branch and bound algorithm for solving the multiple choice knapsack problem”, Journal of Computational and Applied Mathematics, 11, 231–249.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    L. F. Escudero, S. Martello and P. Toth (1995), “A framework for tightening 0–1 programs based on an extension of pure 0–1 KP and SS problems”, In: E. Balas, J. Clausen (eds.): Integer Programming and Combinatorial Optimization, Fourth IPCO Conference. Lecture Notes in Computer Science, 920, 110–123.Google Scholar
  28. [28]
    D. Fayard and G. Plateau (1977), “Reduction algorithm for single and multiple constraints 0–1 linear programming problems”, Conference on Methods of Mathematical Programming, Zakopane (Poland).Google Scholar
  29. [29]
    D. Fayard and G. Plateau (1982), “An Algorithm for the Solution of the 0–1 Knapsack Problem”, Computing, 28, 269–287.CrossRefzbMATHGoogle Scholar
  30. [30]
    D. Fayard and G. Plateau (1994), “An exact algorithm for the 0–1 collapsing knapsack problem”, Discrete Applied Mathematics, 49, 175–187.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    C.E. Ferreira, M. Grötsche, S. Kieft, C. Krispenz, A. Martin and R. Weismantel (1993), “Some integer programs arising in the design of mainframe computers”, ZOR, 38 77–100.zbMATHGoogle Scholar
  32. [32]
    C. E. Ferreira, A. Martin, C. de Souza, R. Weismantel and L. Wolsey (1994), “Formulations and valid inequalities for the node capacitated graph partitioning problem”, CORE discussion paper, 9437, Unversité Catholique de Louvain.Google Scholar
  33. [33]
    C.E. Ferreira, A. Martin, R. Weismantel (1996), “Solving multiple knapsack problems by cutting planes”, SIAM Journal on Optimization, 6, 858–877.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    M. Fischetti and S. Martello (1988), “A hybrid algorithm for finding the kth smallest of n elements in O(n) time. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran codes for Network Optimization,Annals of Operations Research,13 401–419.Google Scholar
  35. [35]
    M. Fischetti and P. Toth (1988), “A new dominance procedure for combinatorial optimization problems”, Operations Research Letters, 7, 181–187.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    M. L. Fisher (1981), “The Lagrangian Relaxation Method for Solving Integer Programming Problems”, Management Science, 27, 1–18.CrossRefzbMATHMathSciNetGoogle Scholar
  37. [37]
    A. Fréville G. Plateau (1993), “An exact search for the solution of the surrogate dual for the 0–1 bidimensional knapsack problem”, European Journal of Operational Research, 68, 413–421.CrossRefzbMATHGoogle Scholar
  38. [38]
    A.M. Frieze, M.R.B. Clarke (1984), “Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analysis”, European Journal of Operational Research, 15, 100–109.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    G. Gallo, P.L. Hammer, B. Simeone (1980), “Quadratic knapsack problems”, Mathematical Programming 12 132–149.zbMATHMathSciNetGoogle Scholar
  40. [40]
    M. R. Garey and D. S. Johnson (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco.zbMATHGoogle Scholar
  41. [41]
    B. Gavish and H. Pirkul (1985), “Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality” Mathematicial Programming, 31, 78–105.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    G. Gens and E. Levner (1994), “A fast approximation algorithm for the subset-sum problem”, INFOR, 32, 143–148.zbMATHGoogle Scholar
  43. [43]
    P. C. Gilmore and R. E. Gomory (1965), “Multistage cutting stock problems of two and more dimensions”, Operations Research, 13, 94–120.CrossRefzbMATHGoogle Scholar
  44. [44]
    P. C. Gilmore and R. E. Gomory (1966), “The theory and computation of knapsack functions”, Operations Research, 14, 1045–1074.CrossRefMathSciNetGoogle Scholar
  45. [45]
    F. Glover (1965), “A multiphase dual algorithm for the zero-one integer programming problem”, Operations Research, 13, 879–919.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    A.V. Goldberg, A. Marchetti-Spaccamela (1984), “On finding the exact solution to a zero-one knapsack problem”, Proc. 16th Annual ACM Symposium Theory of Computing, 359–368.Google Scholar
  47. [47]
    H. Greenberg (1985), “An algorithm for the periodic solutions in the knapsack problem”, Journal of Mathematical Analysis and Applications, 111, 327–331.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    H. Greenberg (1986), “On equivalent knapsack problems”, Discrete Applied Mathematics, 14, 263–268.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    H. Greenberg, I. Feldman (1980), “A better-step-off algorithm for the knapsack problem”, Discrete Applied Mathematics, 2, 21–25.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    P.L. Hammer, E.L. Johnson, U.N. Peled (1975), “Facets of regular 0–1 polytopes”, Mathematical Programming, 8 179–206.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    D. S. Hirschberg and C. K. Wong (1976), “A polynomial time algorithm for the knapsack problem with two variables”, Journal of ACM, 23 147–154.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    D.S. Hochbaum (1995), “A Nonlinear Knapsack Problem”, Operations Research Letters, 17, 103–110.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    K. L. Hoffman and M. Padberg (1993), “Solving airline crew-scheduling problems by branch and cut”, Management Science, 39, 657–682.CrossRefzbMATHGoogle Scholar
  54. [54]
    E. Horowitz and S Sahni (1974), “Computing partitions with applications to the Knapsack Problem”, Journal of ACM, 21, 277–292.CrossRefzbMATHMathSciNetGoogle Scholar
  55. [55]
    M. S. Hung and J. C. Fisk (1978), “An algorithm for 0–1 multiple knapsack problems”, Naval Research Logistics Quarterly, 24, 571–579.CrossRefMathSciNetGoogle Scholar
  56. [56]
    T. Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization — Part 1”, Annals of Operations Research, 10.Google Scholar
  57. [57]
    T. Ibaraki (1987), “Enumerative Approaches to Combinatorial Optimization — Part 2”, Annals of Operations Research, 11.Google Scholar
  58. [58]
    H. Ibarra and C.E. Kim (1975), “Fast approximation algorithms for the knapsack and sum of subset problem”, Journal of ACM, 22, 463–468.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    G. P. Ingargiola and J. F. Korsh (1973), “A Reduction Algorithm for Zero-One Single Knapsack Problems”, Management Science, 20, 460–463.CrossRefzbMATHGoogle Scholar
  60. [60]
    G. P. Ingargiola and J. F. Korsh (1975), “An algorithm for the solution of 0–1 loading problems”, Operations Research, 23, 752–759.CrossRefMathSciNetGoogle Scholar
  61. [61]
    G. P. Ingargiola and J. F. Korsh (1977), “A general algorithm for the one-dimensional knapsack problem”, Operations Research, 25, 752–759.CrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    R. G. Jeroslow (1974), “Trivial Integer Programs Unsolvable by Branchand-Bound”, Mathematical Programming, 6, 105–109.CrossRefzbMATHGoogle Scholar
  63. [63]
    E.L. Johnson and M.W. Padberg (1981), “A note on the knapsack probem with special ordered sets”, Operations Research Letters, 1, 1822.CrossRefMathSciNetGoogle Scholar
  64. [64]
    R. Kannan (1980), “A polynomial algorithm for the two-variables integer programming problem”, Journal of ACM, 27, 118–122.CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    G. A. P. Kindervater and J. K. Lenstra (1986), “An introduction to parallelism in combinatorial optimization”, Discrete Applied Mathematics, 14, 135–156.CrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    D.E. Knuth (1973), The art of Computer Programming,Vo.3,Sorting and Searching, Addison-Wesley, Reading, MA.Google Scholar
  67. [67]
    P. J. Kolesar (1967), “A branch and bound algorithm for the knapsack problem”, Management Science, 13, 723–735.CrossRefGoogle Scholar
  68. [68]
    D. Krass, S.P. Sethi and G. Sorger (1994), “Some complexity issues in a class of knapsack problems: What makes a Knapsack Problem ‘hard’ ”, INFOR, 32, 149–162.zbMATHGoogle Scholar
  69. [69]
    J.C. Lagarias, A.M. Odlyzko (1983), “Solving low-density subset sum problems”, Proc. 2.4 th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, 7–9 November 1983, 1–10.Google Scholar
  70. [70]
    G. Laporte (1992), “The Vehicle Routing Problem: An overview of exact and approximate algorithms”, European Journal of Operational Research, 59, 345–358.CrossRefzbMATHGoogle Scholar
  71. [71]
    G. S. Lueker (1975), “Two NP-complete problems in nonnegative integer programming”, Report No. 178, Computer Science Laboratory, Priceton University, Princeton, NJ.Google Scholar
  72. [72]
    S. Martello and P. Toth (1977), “An Upper Bound for the Zero-One Knapsack Problem and a Branch and Bound algorithm”, European Journal of Operational Research, 1, 169–175.CrossRefzbMATHMathSciNetGoogle Scholar
  73. [73]
    S. Martello and P. Toth (1977), “Branch and bound algorithms for the solution of general unidimensional knapsack problems”. In M. Roubens (ed.), Advances in Operations Research, North-Holland, Amsterdam, 295–301.Google Scholar
  74. [74]
    S. Martello and P. Toth (1979), “The 0–1 knapsack problem”. In A. Mingozzi, P. Toth, C. Sandi (ed.), Combinatorial Optimization, Wiley, Chichester, 237–279.Google Scholar
  75. [75]
    S. Martello and P. Toth (1980), “Solution of the zero-one multiple knapsack problem”, European Journal of Operational Research, 4, 276–283.CrossRefzbMATHMathSciNetGoogle Scholar
  76. [76]
    S. Martello and P. Toth (1981), “A bound and bound algorithm for the zero-one multiple knapsack problem”, Discrete Applied Mathematics, 3, 275–288.CrossRefzbMATHMathSciNetGoogle Scholar
  77. [77]
    S. Martello and P. Toth (1984), “A mixture of dynamic programming and branch-and-bound for the subset-sum problem”, Management Science, 30, 765–771.CrossRefzbMATHMathSciNetGoogle Scholar
  78. [78]
    S. Martello, and P. Toth (1987), “Algorithms for Knapsack Problems”.In S. Martello, G. Laporte, M. Minoux and C. Ribeiro (Eds.), Surveys in Combinatorial Optimization, Ann. Discrete Math. 31, North-Holland,Amsterdam, 1987, 213–257.Google Scholar
  79. [79]
    S. Martello and P. Toth (1988), “A New Algorithm for the 0–1 Knapsack Problem”, Management Science, 34, 633–644.CrossRefzbMATHMathSciNetGoogle Scholar
  80. [80]
    S. Martello and P. Toth (1990), Knapsack Problems: Algorithms and Computer Implementations, Wiley, Chichester, England.zbMATHGoogle Scholar
  81. [81]
    S. Martello and P. Toth (1990), “An exact algorithm for large unbounded knapsack problems”, Operations Research Letters, 9, 15–20.CrossRefzbMATHMathSciNetGoogle Scholar
  82. [82]
    S. Martello and P. Toth (1995), “The bottleneck generalized assignment problem”, European Journal of Operational Research, 83 621–638.CrossRefzbMATHGoogle Scholar
  83. [83]
    S. Martello and P. Toth (1997), “Upper Bounds and Algorithms for Hard 0–1 Knapsack Problems”, Operations Research, 45, 768–778.CrossRefzbMATHMathSciNetGoogle Scholar
  84. [84]
    G. B. Mathews (1897), “On the Partition of Numbers”, Proc. of the London Mathematical Society, 28, 486–490.CrossRefzbMATHGoogle Scholar
  85. [85]
    T. L. Morin and R. E. Marsten (1976), “An algorithm for nonlinear knapsack problems”, Management Science, 22, 1147–1158.CrossRefzbMATHMathSciNetGoogle Scholar
  86. [86]
    H. Müller-Merbach (1979), “Improved upper bound for the zero-one knapsack problem. A note on the paper by Martello and Toth”, European Journal of Operational Research, 2, 212–213.CrossRefGoogle Scholar
  87. [87]
    J. I. Munro, R. J. Ramirez (1982), “Reducing Space Requirements for Shortest Path Problems”, Operations Research, 30, 1009–1013.CrossRefzbMATHGoogle Scholar
  88. [88]
    R. M. Nauss (1976), “An Efficient Algorithm for the 0–1 Knapsack Problem”, Management Science, 23, 27–31.CrossRefzbMATHGoogle Scholar
  89. [89]
    R. M. Nauss (1978), “The 0–1 knapsack problem with multiple choice constraint”, European Journal of Operational Research, 2, 125–131.CrossRefzbMATHMathSciNetGoogle Scholar
  90. [90]
    A. Neebe and D Dannenbring (1977), “Algorithms for a specialized segregated storage problem”, University of North Carolina, Technical Report 77–5.Google Scholar
  91. [91]
    G. L. Nemhauser and Z. Ullmann (1969), “Discrete dynamic programming and capital allocation”, Management Science, 15, 494–505.CrossRefMathSciNetGoogle Scholar
  92. [92]
    G.L. Nemhauser and L.A. Wolsey (1988), Integer and Combinatorial Optimization, Wiley, Chichester.zbMATHGoogle Scholar
  93. [93]
    M.W. Padberg (1975), “A note on zero-one programming”, Operations Research, 23, 833–837.CrossRefzbMATHMathSciNetGoogle Scholar
  94. [94]
    C. H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  95. [95]
    U. Pferschy, D. Pisinger, G.J. Woeginger (1997), “Simple but Efficient Approaches for the Collapsing Knapsack Problem”, Discrete Applied Mathematics, 77, 271–280CrossRefzbMATHMathSciNetGoogle Scholar
  96. [96]
    D. Pisinger (1995), “An expanding-core algorithm for the exact 0–1 knapsack problem,” European Journal of Operational Research, 87, 175–187.CrossRefzbMATHGoogle Scholar
  97. [97]
    D. Pisinger (1994), “Core Problems in Knapsack Algorithms”, DIKU, University of Copenhagen, Denmark, Report 94/26. Submitted Operations Research, conditionally accepted.Google Scholar
  98. [98]
    D. Pisinger (1994), “Dominance Relations in Unbounded Knapsack Problems”, DIKU, University of Copenhagen, Denmark, Report 94/33. Submitted European Journal of Operational Research.Google Scholar
  99. [99]
    D. Pisinger (1995), “An O(nr) Algorithm for the Subset Sum Problem”, DIKU, University of Copenhagen, Denmark, Report 95/6.Google Scholar
  100. [100]
    D. Pisinger (1995), “A minimal algorithm for the Bounded Knapsack Problem”, In: E. Galas, J. Clausen (eds.): Integer Programming and Combinatorial Optimzation,Fourth IPCO conference.Lecture Notes in Computer Science, 920, 95–109.Google Scholar
  101. [101]
    D. Pisinger (1995), “The Multiple Loading Problem”, Proc. NOAS’95, University of Reykjavik, 18–19 August 1995. Submitted European Journal of Operational Research Google Scholar
  102. [102]
    D. Pisinger (1995), “A minimal algorithm for the Multiple-choice Knapsack Problem,” European Journal of Operational Research, 83, 394–410.CrossRefzbMATHGoogle Scholar
  103. [103]
    D. Pisinger (1996), “Strongly correlated knapsack problems are trivial to solve”, Proc. CO96, Imperial College of Science, Technology and Medicine, London 27–29 March 1996. Submitted Discrete Applied Mathematics.Google Scholar
  104. [104]
    D. Pisinger (1996), “The Bounded Multiple-choice Knapsack Problem”, Proc. AIRO’96 Perugia, 16–20 September 1996, 363–365.Google Scholar
  105. [105]
    D. Pisinger (1997), “A minimal algorithm for the 0–1 knapsack problem”, Operations Research, 45, 758–767.CrossRefzbMATHMathSciNetGoogle Scholar
  106. [106]
    G. Plateau and M. Elkihel (1985), “A hybrid method for the 0–1 knapsack problem”, Methods of Operations Research, 49, 277–293.zbMATHMathSciNetGoogle Scholar
  107. [107]
    S.A. Plotkin, D.B. Shmoys, E. Tardos (1991), “Fast approximation algorithms for fractional packing and covering problems”, Proc. 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1–4 October 1991, 495–504.Google Scholar
  108. [108]
    T. J. van Roy and L. A. Wolsey (1987), “Solving mixed integer programming problems using automatic reformulation”, Operations Research, 35, 45–57.CrossRefzbMATHMathSciNetGoogle Scholar
  109. [109]
    A. Sinha and A. A. Zoltners (1979), “The multiple-choice knapsack problem”, Operations Research, 27, 503–515.CrossRefzbMATHMathSciNetGoogle Scholar
  110. [110]
    The Standard Performance Evaluation Corporation, http://www/specbench.org
  111. [111]
    M. M. Syslo, N. Deo, J. S. Kowalik (1983), Discrete Optimization Algorithms, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  112. [112]
    P. Toth (1980), “Dynamic programming algorithms for the zero-one knapsack problem”, Computing, 25, 29–45.CrossRefzbMATHMathSciNetGoogle Scholar
  113. [113]
    R. Weismantel (1995), “Knapsack Problems, Test Sets and Polyhedra”, Habilitationsschrift, TU Berlin, June 1995.Google Scholar
  114. [114]
    C. Witzgal (1977), “On One-Row Linear Programs”, Applied Mathematics Division, National Bureau of Standards.Google Scholar
  115. [115]
    L.A. Wolsey (1975), “Facets of linear inequalities in 0–1 Variables”, Mathematical Programming, 8, 165–178.CrossRefzbMATHMathSciNetGoogle Scholar
  116. [116]
    E. Zemel (1980), “The linear multiple choice knapsack problem”, Operations Research, 28, 1412–1423.CrossRefzbMATHMathSciNetGoogle Scholar
  117. [117]
    E. Zemel (1984), “An 0(n) algorithm for the linear multiple choice knapsack problem and related problems”, Information Processing Letters, 18, 123–128.CrossRefzbMATHMathSciNetGoogle Scholar
  118. [118]
    A.A. Zoltners (1978), “A direct descent binary knapsack algorithm”, Journal of ACM, 25, 304–311.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • David Pisinger
    • 1
  • Paolo Toth
    • 2
  1. 1.DIKUUniversity of CopenhagenCopenhagenDenmark
  2. 2.DEISUniversity of BolognaBolognaItaly

Personalised recommendations