Advertisement

The Equitable Coloring of Graphs

  • Ko-Wei Lih
Chapter

Abstract

Let the vertices of a graph G be colored with k colors such that no adjacent vertices receive the same color and the sizes of the color classes differ by at most one. Then G is said to be equitably k-colorable. The equitable chromatic number x = (G) is the smallest integer k such that G is equitably k-colorable. In this article, we survey recent progress on the equitable coloring of graphs. We pay more attention to work done on the Equitable ∆-Coloring Conjecture. We also discuss related graph coloring notions and their problems. The survey ends with suggestions for further research topics.

Keywords

Equitable coloring Equitable edge coloring m-bounded coloring Equalized total coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bollobás and R. K. Guy, Equitable and proportional coloring of trees, J. Combin. Theory Ser. B, 34 (1983) 177–186.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc., 37 (1941) 194–197.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B.-L. Chen, M.-T. Ko, and K.-W. Lih, Equitable and m-bounded coloring of split graphs, in M. Deza, R. Euler, and I. Manoussakis, eds., Combinatorics and Computer Science, Lecture Notes in Computer Science 1120, (Springer, Berlin, 1996 ) 1–5.Google Scholar
  4. [4]
    B.-L. Chen and K.-W. Lih, A note on the m-bounded chromatic number of a tree, Europ. J. Combinatorics, 14 (1993) 311–312.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    B.-L. Chen and K.-W. Lih, Equitable coloring of trees, J. Combin. Theory Ser B, 61 (1994) 83–87.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    B.-L. Chen, K.-W. Lih, and P.-L. Wu, Equitable coloring and the maximum degree, Europ. J. Combinatorics, 15 (1994) 443–447.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    B.-L. Chen, K.-W. Lih, and J.-H. Yan, Equitable coloring of graph products, manuscript, 1998.Google Scholar
  8. [8]
    B.-L. Chen, K.-W. Lih, and J.-H. Yan, A note on equitable coloring of interval graphs, manuscript, 1998.Google Scholar
  9. [9]
    B.-L. Chen and C.-H. Wu, The equitable coloring of complete partite graphs, manuscript, 1994.Google Scholar
  10. [10]
    H.-L. Fu, Some results on equalized total coloring, Congressus Numerantium, 102 (1994) 111–119.zbMATHMathSciNetGoogle Scholar
  11. [11]
    R. P. Gupta, On decompositions of a multigraph into spanning sub-graphs, Bull. Amer. Math. Soc., 80 (1974) 500–502.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    R. K. Guy, Monthly research problems, 1969–1975, Amer. Math. Monthly, 82 (1975) 995–1004.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in: A. Rényi and V. T. Sos, eds., Combinatorial Theory and Its Applications, Vol. II, Colloq. Math. Soc. Janos Bolyai 4 ( North-Holland, Amsterdam, 1970 ) 601–623.Google Scholar
  14. [14]
    P. Hansen, A. Hertz, and J. Kuplinsky, Bounded vertex colorings of graphs, Discrete Math., 111 (1993) 305–312.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    A. J. W. Hilton and D. de Werra, A sufficient condition for equitable edge-colourings of simple graphs, Discrete Math., 128 (1994) 179–201.Google Scholar
  16. [16]
    T. R. Jensen and B. Toft, Graph Coloring Problems, ( John Wiley & Sons, New York, 1995 ).zbMATHGoogle Scholar
  17. [17]
    K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, Discrete Math., 151 (1996) 155–160.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    C.-Y. Lin, The Equitable Coloring of Bipartite Graphs, Master thesis, Tunghai University, Taiwan, 1995.Google Scholar
  19. [19]
    A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, ( Academic Press, New York, 1979 ).zbMATHGoogle Scholar
  20. [20]
    W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973) 920–922.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    B. Toft, 75 graph-colouring problems, in: R. Nelson and R. J. Wilson, eds., Graph Colourings, ( Longman, Essex, 1990 ) 9–36.Google Scholar
  22. [22]
    A. C. Tucker, Perfect graphs and an application to optimizing municipal services, SIAM Rev., 15 (1973) 585–590.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    V. G. Vizing, On an estimate of the chromatic class of a p-graph (Russian), Diskret. Analiz., 3 (1964) 25–30.MathSciNetGoogle Scholar
  24. [24]
    W. Wang, Equitable Colorings and Total Colorings of Graphs, Ph.D. dissertation, Nanjing University, China, 1997.Google Scholar
  25. [25]
    D. de Werra, Some uses of hypergraph in timetabling, Asis-Pacific J. Oper. Res., 2 (1985) 2–12.zbMATHGoogle Scholar
  26. [26]
    H. P. Yap and Y. Zhang, On equitable coloring of graphs, manuscript, 1996.Google Scholar
  27. [27]
    H. P. Yap and Y. Zhang, The equitable 0-colouring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sinica, 25 (1997) 143–149.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Y.Zhang and H. P. Yap, equitable colorings of planar graphs, to appear in J. Combin. Math. Combin. Comput.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ko-Wei Lih
    • 1
  1. 1.Institute of MathematicsAcademia SinicaTaipeiTaiwan

Personalised recommendations