Advertisement

Some Eisenstein Series Identities Associated with the Borwein Functions

  • Zhi-Guo Liu
Part of the Developments in Mathematics book series (DEVM, volume 4)

Abstract

In this note, we show how certain Eisenstein series identities associated with the Borweins’ theta-functions can be derived from a well-known identity involving theta-functions and one identity of Ramanujan. We employ the theory of elliptic functions to derive some related theta-function identities. These theta-function identities give a different approach to the Eisenstein series identities. By using some Eisenstein series identities of this note, we provide completely new proofs of the Borweins’ cubic theta function identity and the well-known Jacobi identity in the theory of modular forms.

Keywords

The Borwein functions elliptic functions Eisenstein series The Borweins’ cubic theta function identity Jacobi identity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. C. Berndt, On a certain theta-functions in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), 33–43.MathSciNetzbMATHGoogle Scholar
  2. [2]
    B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.zbMATHGoogle Scholar
  3. [3]
    B. C. Berndt, S. Bhargava and F. G. Garvan, Ramanujan’s theories of elliptic func-tions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4136–4244.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and AGM, Trans. Amer. Math. Soc. 323 (1991), 691–701.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    J. M. Borwein, P. B. Borwein and F. G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35–47.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    L. Carlitz, Note on some partition formulae, Quart. J. Math., Oxford Ser.(2) 4 (1953), 168–172.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    K. Chandrasekharan, Elliptic Functions, Springer-Verlag, New York, 1985zbMATHGoogle Scholar
  8. [8]
    M. Hirschhorn, F. Garvan and J. M. Borwein, Cubic analogues of the Jacobian theta function θ( z,q), Canad. J. Math. 45 (1993), 673–694.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York, 1984.zbMATHGoogle Scholar
  10. [10]
    S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc. 22 (1916), 159–184.Google Scholar
  11. [11]
    S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bom-bay, 1957.Google Scholar
  12. [12]
    S Ramanujan, Collected papers, Chelsea, New York, 1966.Google Scholar
  13. [13]
    S. Ramanujan, The Lost Notebook of Other Unpublished papers, Narosa, New Delhi, 1988.Google Scholar
  14. [14]
    R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cam-bridge, 1977.zbMATHCrossRefGoogle Scholar
  15. [15]
    L.-C. Shen, On the additive formula of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5, Trans. Amer. Math. Soc. 345 (1994), 323–345.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    L. -C. Shen, On an identity of Ramanujan based on the hypergeometric series \({}_2{F_1}\left( {\frac{1}{3},\frac{2}{3};\frac{1}{2};x} \right)\) J. Number Theory 69 (1998), 125–134.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    J. -P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.zbMATHGoogle Scholar
  18. [18]
    E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed, Cambridge University Press, Cambridge, 1966.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Zhi-Guo Liu
    • 1
    • 2
  1. 1.Mathematics DeptXinxiang Education CollegeXinxiang, HenanP.R. China
  2. 2.Nanjing Institute of MeteorologyNanjingP.R. China

Personalised recommendations