Advertisement

The Borweins’ Cubic Theta Functions and q-Elliptic Functions

  • Richard Lewis
  • Zhi-Guo Liu
Part of the Developments in Mathematics book series (DEVM, volume 4)

Abstract

We give two identities; one, originally due to Weierstrass, is old and one appears to be new. We use these identities to give proofs of some relations between the functions a(q), b (q) and c (q) of Borwein, Borwein and Garvan [4].

Keywords

q-elliptic function the power series (z; q) and [z; q] the Borweins’ identities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry num-ber congruences, J. reine angew Math. 518 (200), 187–212.Google Scholar
  2. [2]
    George E. Andrews, Richard Lewis and Zhi-Guo Liu, An identity relating a theta function to a sum of Lambert series, Bull. London Math. Soc. (to appear).Google Scholar
  3. [3]
    George E. Andrews, The theory of partitions, Cambridge University Press 1984.zbMATHCrossRefGoogle Scholar
  4. [4]
    J. M. Borwein, P. B. Borwein and F. G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35–47.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Paul Hammond, Richard Lewis and Zhi-Guo Liu, Hirschhorn’s Identities, Bull. Aus-tral. Math. Soc. 60 (1999), 73–80.zbMATHCrossRefGoogle Scholar
  6. [6]
    Neal Koblitz, Introduction to Elliptic Curves and Modular Forms,Springer, 1993.CrossRefGoogle Scholar
  7. [7]
    Richard Lewis and Zhi-Guo Liu, A conjecture of Hirschhorn on the 4-dissection of Ramanujan’s continued fraction, Ramanujan J. (to appear).Google Scholar
  8. [8]
    L. Lorenz, Bidrag til tallenes theori, Tidsskrift for Mathematik (3) 1 (1871), 97–114.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Richard Lewis
    • 1
  • Zhi-Guo Liu
    • 2
    • 3
  1. 1.SMSThe University of SussexBrightonUK
  2. 2.Mathematics Dept.Xinxiang Education CollegeXinxiang, HenanP.R. China
  3. 3.Nanjing Institute of MeteorologyNanjingP.R. China

Personalised recommendations