Thermodynamics of the Garnet—Plagioclase—Al2SiO5—Quartz Geobarometer

Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


Until recently, the development of mineralogic geobarometry of crustal metamorphic assemblages has lagged far behind minéralogic geothermometry. Temperatures of crystallization of metamorphic rocks can be deduced from a number of relatively reliable thermometers. Pressures of metamorphism, on the other hand, have been estimated mainly semiquantitatively with reference to a few simple univariant equilibria such as the Al2SiO5 polymorphic relations. Various geobarometers based on continuous variation of mineral compositions have been proposed, but most of these are still in the conceptual stage, either lacking an underpinning of experimental or thermodynamic calibration or beset with as yet unresolved experimental difficulties, such as the H2O content of cordierite and its debated effects on the cordierite-garnet (Fe, Mg) partitioning geobarometer (Newton and Wood, 1979).


Partial Molal Volume Configurational Entropy Excess Entropy Excess Free Energy Natural Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. A. M., and O. J. Kleppa, 1969, The thermochemistry of the kyanite-sillimanite equilibrium, Am. J. Sci., 267, 285–290.CrossRefGoogle Scholar
  2. Charlu, T. V., R. C. Newton, and O. J. Kleppa, 1978, Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria, Geochim. Cosmochim. Acta, 42, 367–375.CrossRefGoogle Scholar
  3. Cressey, G., R. Schmid, and B. J. Wood, 1978, Thermodynamic properties of almandine-grossular garnet solid solutions, Contrib. Mineral. Petrol., 67, 397–404.CrossRefGoogle Scholar
  4. Dempsey, M. J., 1980, Evidence for structural changes in garnet caused by calcium substitution, Contrib. Mineral. Petrol., 71, 281–288.CrossRefGoogle Scholar
  5. Ganguly, J., and G. C. Kennedy, 1974, The energetics of natural garnet solid solution: I. Mixing of the aluminosilicate end-members, Contrib. Mineral. Petrol., 48, 137–148.CrossRefGoogle Scholar
  6. Ghent, E. D., 1976, Plagioclase-garnet—Al2SiO5-quartz: a potential geobarometer-geothermometer, Am. Mineral., 61, 710–714.Google Scholar
  7. Ghent, E. D., D. B. Robbins, and M. Z. Stout, 1979, Geothermometry, geobarometry, and fluid compositions of metamorphosed calcsilicates and pelites, Mica Creek, British Columbia, Am. Mineral., 64, 874–885.Google Scholar
  8. Goldsmith, J. R., 1980, Melting and breakdown reactions of anorthite at high pressures and temperatures, Am. Mineral., 65, 272–284.Google Scholar
  9. Grew, E. S., 1980, Sapphirine + quartz association from Archean rocks in Enderby Land, Antarctica, Am. Mineral., 65, 821–836.Google Scholar
  10. Hariya, Y., and G. C. Kennedy, 1968, Equilibrium study of anorthite under high pressure and high temperature, Am. J. Sci., 266, 193–203.CrossRefGoogle Scholar
  11. Haselton, H. T., and R. C. Newton, 1980, Thermodynamics of pryrope-grossular garnets and their stabilities at high temperatures and pressures, J. Geophys. Res.Google Scholar
  12. Haselton, H. T., and E. F. Westrum, 1980, Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40, Geochim. Cosmochim. Acta.Google Scholar
  13. Hashimoto, M., 1968, Grossular-spessartine garnet from low-grade pelitic schist of the Katsuyama district, Okayama Prefecture, J. Geol. Soc. Japan, 74, 343–345.Google Scholar
  14. Hays, J. F., 1966, Lime-alumina-silica, Carnegie Inst. Wash. Yrbk., 65, 234–239.Google Scholar
  15. Hensen, B. J., 1977, The stability of osumilite in high grade metamorphic rocks, Contrib. Mineral. Petrol., 64, 197–204.CrossRefGoogle Scholar
  16. Hensen, B. J., R. Schmid, and B. J. Wood, 1975, Activity-composition relations for pyrope-grossular garnet, Contrib. Mineral. Petrol., 51, 161–166.CrossRefGoogle Scholar
  17. Holdaway, M. J., 1971, Stability of andalusite and the aluminum silicate phase diagram, Am. J. Sci., 271, 97–131.CrossRefGoogle Scholar
  18. Hsu, L. C., 1978, The phase relationships in the system Ca3Al2Si3O12-Mn3Al2Si3O12-H2O at 2.0 kilobars, EOS, 59, 402.Google Scholar
  19. Hutcheon, I., E. Froese, and T. M. Gordon, 1974, The assemblage quartz-sillimanite-garnet-cordierite as an indicator of metamorphic conditions in the Daly Bay Complex, N.W.T., Contrib. Mineral. Petrol., 44, 29–34.CrossRefGoogle Scholar
  20. Iiyama, J. T., and M. Volfinger, 1976, A model for trace-element distribution in silicate structures, Mineral. Mag., 40, 555–564.CrossRefGoogle Scholar
  21. Kawasaki, T., and Y. Matsui, 1977, Partitioning of Fe2+ and Mg2+ between olivine and garnet, Earth Planet. Sci. Lett., 37, 159–166.CrossRefGoogle Scholar
  22. Kays, M. A., and L. G. Medaris, 1976, Petrology of the Hara Lake paragneisses, Northeastern Saskatchewan, Canada, Contrib. Mineral. Petrol., 59, 141–159.CrossRefGoogle Scholar
  23. Kerrick, D. M., and L. S. Darken, 1975, Statistical thermodynamic models for ideal oxide and silicate solid solutions, with application to plagioclase, Geochim. Cosmochim. Acta 39, 1431–1442.CrossRefGoogle Scholar
  24. Kretz, R., 1959, Chemical study of garnet, biotite and hornblende from gneisses of southwestern Quebec, with emphasis on distribution of elements in coexisting minerals, J. Geol., 67, 371–403.CrossRefGoogle Scholar
  25. Kroll, H., and W. F. Müller, 1980, X-ray and electron-optical investigation of synethetic high-temperature plagioclases, Phys. Chem. Mineral., 5, 255–278.Google Scholar
  26. Krupka, K. M., R. A. Robie, and B. S. Hemingway, 1977, The heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 between 350 and 1000 K, EOS, 58, 523.Google Scholar
  27. Lundgren, L. W., 1966, Muscovite reactions and partial melting in Southeastern Connecticut, J. Petrol., 7, 421–453.Google Scholar
  28. Nafziger, R. H., and A. Muan, 1967, Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2, Am. Mineral., 53, 1364–1385.Google Scholar
  29. Newton, R. C., T. V. Charlu, and O. J. Kleppa, 1980, Thermochemistry of the high structural state plagioclases, Geochim. Cosmochim. Acta., 44, 933–941.CrossRefGoogle Scholar
  30. Newton, R. C., T. V. Charlu, and O. J. Kleppa, 1977, Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2, Geochim. Cosmochim. Acta, 41, 369–377.CrossRefGoogle Scholar
  31. Newton, R. C., and B. J. Wood, 1980, Volume behavior of silicate solid solutions, Am. Mineral., 65, 733–745.Google Scholar
  32. Newton, R. C., and B. J. Wood, 1979, Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase, Contrib. Mineral. Petrol., 68, 391–405.CrossRefGoogle Scholar
  33. O’Neill, H. St. C., and B. J. Wood, 1979, An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer, Contrib. Mineral. Petrol., 70, 59–70.CrossRefGoogle Scholar
  34. Orville, P. M., 1972, Plagioclase cation exchange equilibria with aqueous chloride solution: Results at 700°C and 2000 bars in the presence of quartz, Am. J. Sci., 272, 234–272.CrossRefGoogle Scholar
  35. Perkins, D., 1979, Application of new thermodynamic data to mineral equilibria, Ph.D. Thesis, University of Michigan.Google Scholar
  36. Perkins, D., E. F. Westrum, and E. J. Essene, 1980, The thermodynamic properties and phase relations of some minerals in the system CaO-Al2O3-SiO2-H2O, Geochim. Cosmochim. Acta, 44, 61–84.CrossRefGoogle Scholar
  37. Richardson, S. W., M. C. Gilbert, and P. M. Bell, 1969, Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point, Am. J. Sci., 267, 259–272.CrossRefGoogle Scholar
  38. Robie, R. A., B. S. Hemingway, and W. H. Wilson, 1978, Low-temperature heat capacities and entropies of KAlSi3O8, NaAlSi3O8, and CaAl2Si2O8 glasses and of anorthite, Am. Mineral., 63, 110–123.Google Scholar
  39. Sack, R. O., 1980, Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines, Contrib. Mineral. Petrol., 71, 237–246.CrossRefGoogle Scholar
  40. Schmid, R., G. Cressey, and B. J. Wood, 1978, Experimental determination of univariant equilibria using divariant solid solution assemblages, Am. Mineral., 63, 511–515.Google Scholar
  41. Schmid, R., and B. J. Wood, 1976, Phase relationships in granulitic metapelites from the Ivrea-Verbano Zone (northern Italy), Contrib. Mineral. Petrol., 54, 255–279.CrossRefGoogle Scholar
  42. Smith, J. V., 1974, Feldspar Minerals, vol. I. Crystal Structure and Physical Properties, Springer-Verlag, New York.Google Scholar
  43. Thompson, A. B., 1976, Mineral reactions in pelitic rocks. II. Calculation of some P-T-X (Fe-Mg) phase relations, Am. J. Sci., 276, 425–454.CrossRefGoogle Scholar
  44. Tracy, R. J., P. Robinson, and A. B. Thompson, 1976, Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts, Am. Mineral., 61, 762–775.Google Scholar
  45. Winkler, H. G. F., 1967, Petrogenesis of metamorphic rocks, Springer-Verlag, Berlin.Google Scholar
  46. Wood, B. J., and O. J. Kleppa, 1980, Thermochemistry of forsterite-fayalite olivine solution, Geochim. Cosmochim. Acta.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  1. 1.U.S. Geological SurveyRestonUSA

Personalised recommendations