Advertisement

Cubature Formulae, Polytopes, and Spherical Designs

  • J. M. Goethals
  • J. J. Seidel

Abstract

The construction of a cubature formula of strength t for the unit sphere Ω d in ℝ d amounts to finding finite sets X 1,..., X N ⊂ Ω d and coefficients a 1,..., a N ∈ ℝ such that
$$ |{\Omega _d}{|^{ - 1}}\int_{{\Omega _d}}^{} {f(\xi )d\omega } (\xi ) = \sum\limits_{i = 1}^N {{a_i}|{X_i}{|^{ - 1}}} \sum\limits_{x \in {X_\iota }} {f(x),} $$
(1.1)
for all functions f represented on Ω d by polynomials of degree ⩽ t; cf. [16], [15], [11]. Sobolev [14,15] introduced group theory into the construction of cubature formulae by considering orbits X ι under a finite subgroup G of the orthogonal group O(d). Thus spherical polytopes and root systems (cf. Coxeter [3]) enter the discussion. There are further relations to Coxeter’s work, since the obstruction to higher strength for a cubature formula is caused essentially by the existence of certain invariants. For finite groups generated by reflections, the theory of exponents and invariants goes back to Coxeter [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Carter, R. W., Simple Groups of Lie Type. Wiley 1972.Google Scholar
  2. [2]
    Conway, J. H., A group of order 8,315,553,613,086,720,000. Bull. London Math. Soc. 1 (1969), 79–88.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Coxeter, H. S. M., Regular polytopes, 3rd ed. Dover 1973.Google Scholar
  4. [4]
    Coxeter, H. S. M., The product of the generators of a finite group generated by reflections. Duke Math. J. 18 (1951), 765–782.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Delsarte, P., Goethals, J. M., and Seidel, J. J., Spherical codes and designs. Geometriae Dedicata 6 (1977), 363–388.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Flatto, L., Invariants of finite reflection groups. L’Enseignement mathém. 24 (1978), 237–292.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Goethals, J. M. and Seidel, J. J., Spherical Designs. In Proc. Sympos. Pure Math. 34, edited by D. K. Ray Chaudhuri, Amer. Math. Soc. 1979.Google Scholar
  8. [8]
    Huffman, W. C. and Sloane, N. J. A., Most primitive groups have messy invariants. Advances in Math. 32 (1979), 118–127.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Müller, C., Spherical Harmonics. Lecture Notes Math. 17. Springer-Verlag 1966.Google Scholar
  10. [10]
    Salihov, G. N., Cubature formulas for a hypersphere that are invariant with respect to the group of the regular 600-face. Dokl. Akad. Nauk SSSR 223 (1975), 1075–1078; English translation Soviet Math. Dokl. 16 (1975), 1046–1049.MathSciNetGoogle Scholar
  11. [11]
    Salihov, G. N., On the theory of cubature formulas for multidimensional spheres. Avtoreferat (Russian), Acad. Sci. USSR, Novosibirsk 1978; Dutch translation memo. 1978–09, Techn. Univ. Eindhoven.Google Scholar
  12. [12]
    Sidelnikov, V. M., New bounds for the density of sphere packings in an n-dimensional Euclidean space. Mat. Sbornik 95 (1974); English translation Math. USSR Sbornik 24 (1974), 147–157.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Sloane, N. J. A., Error-correcting codes and invariant theory: new applications of a nineteenth-century technique. Amer. Math. Monthly 84 (1977), 82–107.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Sobolev, S. L., Cubature formulas on the sphere invariant under finite groups of rotations, Dokl. Akad. Nauk SSSR 146 (1962), 310–313; English translation Soviet Math. Dokl. 3 (1962), 1307–1310.MathSciNetGoogle Scholar
  15. [15]
    Sobolev, S. L., Introduction to the Theory of Cubature Formulas (Russian). Nauka 1974.Google Scholar
  16. [16]
    Stroud, A. H., Approximate Calculation of Multiple Integrals. Prentice-Hall 1971.Google Scholar
  17. [17]
    van Asch, A. G., Modular forms and root systems, Thesis, Univ. Utrecht, 1975.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • J. M. Goethals
    • 1
  • J. J. Seidel
    • 2
  1. 1.Philips Research LaboratoryBrusselsBelgium
  2. 2.Technological University Eindhoventhe Netherlands

Personalised recommendations