The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems

  • Gregory R. Biddinger
  • Steven P. Gloss
Part of the Residue Reviews book series (RECT, volume 91)

Abstract

The U.S. Environmental Protection Agency (EPA) is responsible for establishing Water Quality Criteria which are protective of fresh water and marine life as well as human health. In 1980 the EPA announced the availability of criteria for 65 priority toxic pollutants listed under section 307 (a)(1) of the 1977 amendments of the Clean Water Act. Stara et al. (1980) have reviewed the processes and problems involved in establishing such criteria. They list four levels of toxic effects: (1) acute, subchronic and chronic, (2) mutagenic, (3) teratogenic, and (4) carcinogenic. The latter three are all potentially genotoxic in action. Chemicals causing genetic aberrations theoretically have no threshold (Albert et al. 1977) and therefore a zero-incidence is desirable. Chemicals causing toxic action other than genotoxicity are subject to the establishment of a “No Observable Affect Exposure Level” (NOAEL) (Stara et al. 1980) and therefore have a definable threshold. Often the establishment of zero incidence levels is not feasible for genotoxic materials so risk models must be developed. The “one-hit” model recommended in the EPA’s Interim Cancer Procedures and Guidelines for Health Risk… (1976) has been used for non-threshold risk assessment in the establishment of Water Quality Criteria (EPA 1980), and a modified version was used for chemicals with determinable thresholds. In both models the accuracy of the eventual predicted measure is highly dependent on the reliability of the bioconcentration data which are available in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. S.: Effects of lead and hydrocarbons from snowmobile exhaust on brook trout (Salvelinus fontinalis). Trans. Amer. Fish. Soc. 104, 363 (1975)Google Scholar
  2. Albert, R., R. Train, and E. Anderson: Rationale developed by the Environmental Protection Agency for the assessment of carcinogenic risk. J. Nat. Cancer Inst. 58, 1537 (1977).PubMedGoogle Scholar
  3. Anderson, R. B., and O. C. Fenderson: An analysis of variation of insecticide residues in landlocked Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 27, 1 (1970)Google Scholar
  4. Anderson, R. L., and D. L. Defoe: Toxicity and bioaccumulation of endrin and methoxychlor in aquatic invertebrates and fish. Environ. Pollut. Ser. A, 22, 111 (1980)Google Scholar
  5. Andrews, A. K., C. C. Van Valin, and B. E. Stebbings: Some effects of heptachlor on bluegills (Lepomis macrochirus). Trans. Amer. Fish. Soc. 95, 297 (1966).Google Scholar
  6. Aoyama, I., I. Yoshinobu, and Y. Inoue: Experimental study on the concentration process of trace element through a food chain from the viewpoint of nutrition ecology. Water Res. 12, 831 (1978).Google Scholar
  7. Argyle, R. L., G. C. Williams, and H. K. Dupree: Endrin uptake and release by fingerling channel catfish (Ictalurus punctatus). J. Fish. Res. Board Can. 30, 1743 (1973).Google Scholar
  8. Autian, J.: Toxicity and health threats of phthalate esters: Review of literature. Environ. Health Perspect. 4, 3 (1973).PubMedGoogle Scholar
  9. Axelrod, D.: Public health effects of toxic materials. In G. A. Carlson and R. L. Collins (eds.): Toxic Material in the Environment, p. 77. New York State Department of Environmental Conservation, Albany, NY (1978).Google Scholar
  10. Banerjee, S., S. H. Yalkowsy, and S. C. Valvani: Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environ. Sci. Technol. 14, 1227 (1980).Google Scholar
  11. Beijer, K., and A. Jernelov: Ecological aspects of mercury-selenium interactions in the marine environment. Environ. Health Perspect. 25, 43 (1978).PubMedGoogle Scholar
  12. Bennett, H. J., and J. W. Day: Absorption of endrin by the bluegill sunfish, Lepomis macrochirus. Pest. Monit. J. 3, 201 (1970).Google Scholar
  13. Boudou, A., A. Delarche, F. Ribeyre, and R. Marty: Bioaccumulation andbioamplification of mercury compounds in a second level consumer,Gambusia affinis— temperature effects. Bull. Environ. Contam. Toxicol. 22, 813 (1979).PubMedGoogle Scholar
  14. Bowes, G. W., and C. J. Konkel: Presence and distribution of polychlorinated biphenyls (PCB) in arctic and subarctic marine food chains. J. Fish. Res. Board Can. 32, 2111 (1975).Google Scholar
  15. Brimblecombe, P.: Atmospheric arsenic. Nature 280, 104 (1979).PubMedGoogle Scholar
  16. Brown, B. E.: Uptake of copper and lead by a metal-tolerant isopod Asellus meridianus Raf. Freshwater Biol. 7, 235 (1977).Google Scholar
  17. Brungs, W.: Distribution of cobalt 60, zinc 65, strontium 85, and cesium 137 in a freshwater pond. Publ. No. 999-RH-24, U.S. Public Health Service, Washington, D.C. (1967).Google Scholar
  18. —, and D. Mount: Introduction to a discussion of the use of aquatic toxicity tests for evaluation of the effects of toxic substances. In J. Cairns, Jr., K. Dickson, and A. Maki (eds.): Estimating the hazard of chemical substances to aquatic life, p. 15. ASTM STP 657. American Society for Testing and Materials (1978).Google Scholar
  19. Bryan, G. W.: Bioaccumulation of marine pollutants. Phil. Trans. R. Soc. London. Ser. B 286,483 (1979).Google Scholar
  20. Buikema, A. L., M. J. McGinniss, and J. Cairns, Jr.: Phenolics in aquatic ecosystems: A selected review of recent literature. Mar. Environ. Res. 2, 87 (1979).Google Scholar
  21. Butler, G. C. (ed.): Principles of ecotoxicology, SCOPE 12. New York: Wiley (1978).Google Scholar
  22. Canton, J. H., P. A. Greve, W. Sloof, and G. J. Van Esch: Toxicity, accumulation, and elimination studies of a a-hexachlorocyclohexane (a-HCH) with freshwater organisms of different trophic levels. Water Res. 9, 1163 (1975).Google Scholar
  23. —, R. C. C. Wegman, T. J. A. Vulto, C. H. Verhoef, and G. J. Van Esch: Toxicity accumulation and elimination studies of a-hexachlorocyclohexane (a-HCH) with saltwater organisms of different trophic levels. Water Res. 12, 687 (1978).Google Scholar
  24. Cardwell, R. D., D. G. Foreman, T. R. Payne, and D. J. Wilbur: Acute and chronic toxicity of chlordane to fish and invertebrates. U.S. Environmental Protection Agency, Duluth, MN: EPA-600/3–77-019, EPA Ecol. Res. Ser. (1977).Google Scholar
  25. Cearley, J. E.: Toxicity and bioconcentration of cadmium, chromium, and silver in Micropterus salmoides and Lepomis macrochirus. Ph.D. Dissertation, Univ. Oklahoma, Norman, Diss. Abstr. 32B, 5281-B (1972).Google Scholar
  26. Cember, H., E. H. Curtis, and B. G. Blaylock: Mercury bioconcentration in fish: Temperature and concentration effects. Environ. Pollut. 17, 311 (1978).Google Scholar
  27. Chadwick, G. G., and R. W. Brocksen: Accumulation of dieldrin by fish and selected fishfood organisms. J. Wildlife Manag. 33, 693 (1969).Google Scholar
  28. Chiou, C. T., V. H. Freed, D. W. Schmedding, and R. L. Kohnert: Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11, 475 (1977).Google Scholar
  29. Chow, T. J., C. C. Patterson, and D. Settle: Occurrence of lead in tuna. Nature 251(5471), 159(1974).PubMedGoogle Scholar
  30. Clayton, J. R., Jr., S. P. Pavlou, and N. F. Breitner: Polychlorinated biphenyls in coastal marine zooplankton. Bioaccumulation by equilibrium partitioning. Environ. Sci. Technol. 11, 676 (1977).Google Scholar
  31. Crosby, D. G., and R. K. Tucker: Accumulation of DDT by Daphnia magna. Environ. Sci. Technol. 5, 714(1971).Google Scholar
  32. Cumbie, P. M.: Belews Lake environmental study report: Selenium and arsenic accumulation. Duke Power Co. Tech. Rep. Series 78–04 (1978).Google Scholar
  33. —, and S. L. VanHorn: Selenium accumulation associated with fish mortality and reproductive failure. Proc. Ann. Conf. S.E. Assoc. Fish and Wildlife Agencies 32, 612 (1978).Google Scholar
  34. Delfino, J. J.: Toxic substances in the Great Lakes. Environ. Sci. Technol. 13, 1462 (1979).Google Scholar
  35. Dobroski, C. J., Jr., and C. E. Epifanio: Accumulation of benzo[a]pyrene in a larval bivalve via trophic transfer. Can. J. Fish. Aquat. Sci. 37, 2318 (1980).Google Scholar
  36. Doudoroff, P., and M. Katz: Critical review of literature on the toxicity of industrial wastes and their components to fish. II. The metals, as salts. Sew. Ind. Wastes 25, 802 (1953).Google Scholar
  37. Duke, T. W.: Possible routes of zinc 65 from an experimental estuarine environment to man. J. Water Pollut. Control Fed. 39, 536 (1967).PubMedGoogle Scholar
  38. Eberhart, L., R. L. LeeMeeks, and T. J. Peterle: Food chain model for DDT kinetics in a fresh water marsh. Nature 230, 60 (1971).Google Scholar
  39. Echeverria, T.: Accumulation of 14C labeled benzene and related compounds in the rotifer Brachionus plicatidis from seawater. Can. J. Fish. Aquat. Sci. 37, 738 (1980).Google Scholar
  40. Eisenreich, S. J., and G. J. Hollod: Accumulation of polychlorinated biphenyls (PCB’s) in surficial Lake Superior sediments. Atmospheric deposition. Environ. Sci. Technol. 13, 569 (1979).Google Scholar
  41. Eisler, R., G. E. Zaroogian, and R. J. Hennekey: Cadmium uptake by marine organisms. J. Fish. Res. Board Can. 29, 1367 (1972).Google Scholar
  42. Ellgehausen, H., J. A. Guth, and H. O. Esser: Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotoxicol. Environ. Safety 4, 134 (1980).PubMedGoogle Scholar
  43. Enk, M. D., and B. J. Mathis: Distribution of cadmium and lead in a stream ecosystem. Hydrobiologia 52, 153 (1977).Google Scholar
  44. Fagerstrom, T., and B. Asell: Caged fish for estimating concentrations of trace substances in natural waters. Health Phys. 31, 431 (1976).PubMedGoogle Scholar
  45. Farmer, G. J., D. Ashfield, and H. S. Samant: Effects of zinc on juvenile Atlantic salmon (Salmo salar): Acute toxicity, food intake, growth and bioaccumulation. Environ. Pollut. 19, 103 (1979).Google Scholar
  46. Foehrenbach, J.: Chlorinated pesticides in estuarine organisms. J. Water Pollut. Control Fed. 44, 619 (1972).PubMedGoogle Scholar
  47. Foley, R. E., J. R. Spotila, J. R Giesy, and C. H. Wall: Arsenic concentrations in water and fish from Chautauqua Lake, New York. Environ. Biol. Fish 3, 361 (1978).Google Scholar
  48. Fowler, S. W., and G. Benayoun: Accumulation and distribution of selenium in mussel and shrimp tissues. Bull. Environ. Contam. Toxicol. 16, 339 (1976).PubMedGoogle Scholar
  49. —, and D. L. Elder: PCB and DDT residues in Mediterranean pelagic food chain Bull. Environ. Contam. Toxicol. 19, 244 (1978).PubMedGoogle Scholar
  50. Giam, C. S., H. S. Chan, and G. S. Neff: Phthalate ester plasticizers, DDT, DDE and polychlorinated biphenyls in biota from the Gulf of Mexico. Marine Pollut. Bull. 9, 249 (1978 a).Google Scholar
  51. — — —, and E. L. Atlas: Phthalate ester elasticizers: A new class of marine pollutants. Science 199, 419 (1978 b).PubMedGoogle Scholar
  52. —, E. Atlas, H. S. Chan, and G. S. Neff: Phthalate esters, PCB and DDT residues in the Gulf of Mexico atmosphere. Atmosph. Environ. 14, 65 (1980 a).Google Scholar
  53. —, H. E. Murray, L. E. Ray, and S. Kira: Bioaccumulation of hexachlorobenzene in killifish (Fundulus similis). Bull. Environ. Contam. Toxicol. 25, 891 (1980 b).PubMedGoogle Scholar
  54. Giesy, J. P., J. W. Bohling, and J. Kania: Cadmium and zinc accumulation and elimination by freshwater crayfish. Arch. Environ. Contam. Toxicol. 9, 685 (1980).Google Scholar
  55. Goerke, H., G. Eder, K. Weber, and W. Ernst: Patterns of organo-chlorine residues in animals of different trophic levels from the Weser Estuary. Marine Pollut. Bull. 10, 127 (1979).Google Scholar
  56. Goettl, J. P., Jr., J. R. Sinley, and P. H. Davies: Study of the effects of metallic ions on fish and aquatic organisms. Baseline levels of zinc and copper in rainbow trout. In Water Pollution Studies. Job Prog. Rept., Fed. Aid Proj. F-33-R-7, p. 42. Colorado Division of Wildlife, Fort Collins, CO (1972).Google Scholar
  57. — — — Water pollution studies. Job Prog. Rept., Fed. Aid Proj. F-33-R-9, Colorado Division of Wildlife, Fort Collins, CO (1974).Google Scholar
  58. Green, F. A., Jr., and J. M. Neff: Toxicity, accumulation, and release of three polychlorinated napthalenes (Halowax 1000, 1013, and 1099) in postlarval and adult grass shrimp, Palaemonetes pugio. Bull. Environ. Contam. Toxicol. 19, 300 (1977).Google Scholar
  59. Greve, P. A.: Potentially hazardous substances in surface waters. Sci. Total Environ. 1, 173 (1972).PubMedGoogle Scholar
  60. Gruger, E. H., Jr., N. L. Karrick, A. I. Davidson, and T. Hruby: Accumulation of 3,4,3,4- tetrachlorobiphenyl and 2,4,5,2’,4’,5’- and 2,4,6,2’,4’,6’-hexachlorobiphenyl in juvenile coho salmon. Environ. Sci. Technol. 9, 121 (1975).Google Scholar
  61. Grzenda, A. R., W. J. Taylor, and D. F. Paris: The uptake, metabolism, and elimination of chlorinated residues by goldfish (Carassius auratus) 14C-DDT fed a contaminated diet. Trans. Amer. Fish. Soc. 99, 385 (1970).Google Scholar
  62. Gustafson, C. G.: PCB’s—prevalent and persistent. Environ. Sci. Technol. 4, 814 (1970).Google Scholar
  63. Hamelink, J. L.: Current bioconcentration test methods and theory. In F. L. Mayer and J. L. Hamelink (eds.): Aquatic toxicology and hazard evaluation, p. 14. ASTM STP 634, American Society for Testing and Materials (1977).Google Scholar
  64. —, and A. Spacie: Fish and chemicals. The process of accumulation. Ann. Rev. Pharmacol. Toxicol. 17, 167 (1977).Google Scholar
  65. —, and R. C. Waybrant: DDE and lindane in a large-scale model lentie ecosystem. Trans. Amer. Fish. Soc. 105, 207 (1976).Google Scholar
  66. — —, and R. C. Ball: A proposal: Exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentie environments. Trans. Amer. Fish. Soc. 100, 207 (1971).Google Scholar
  67. Hannerz, L.: Experimental investigations on the accumulation of mercury in water organisms. Rept. Inst. Freshwater Res. Drotningholm 48, 120 (1968).Google Scholar
  68. Hansen, D. J., and A. J. Wilson, Jr.: Residues in fish, wildlife and estuaries. Pest. Monit. J. 4, 51 (1970).Google Scholar
  69. Hansen, P. D.: Uptake and transfer of the chlorinated hydrocarbon lindane (r-BHC) in a laboratory freshwater food chain. Environ. Pollut. Ser. A 21, 97 (1980).Google Scholar
  70. Haque, R. (ed.): Dynamics, exposure and hazard assessment of toxic chemicals. Ann Arbor Science Publishers Inc., MI (1980).Google Scholar
  71. Harding, G. C. H., W. P. Vass, and K. F. Drinkwater: Importance of feeding, direct uptake from seawater, and transfer from generation to generation in the accumulation of an organochlorine (p,p’-DDT) by the marine planktonic copepod (Calanus finmarchicus). Can. J. Fish. Aquat. Sci. 38, 101 (1981).Google Scholar
  72. Heit, M., C. S. Klusek, and J. C. Burke: Anthropogenic trace elements and polycyclic aromatic hydrocarbon levels in sediment cores from two lakes in the Adirondack acid lake region. Water Air Soil Pollut. 15, 441 (1981).Google Scholar
  73. Henderson, C., A. Inglis, and W. L. Johnson: Organochlorine insecticide residues in fish—Fall 1969, National Pesticide Monitoring Program. Pest. Monit. J. 5, 1 (1971).Google Scholar
  74. —, W. L. Johnson, and A. Inglis: Organochlorine insecticide residues in fish. Pest. Monit. J. 3, 145 (1969).Google Scholar
  75. Horn, E. G., L. J. Hetling, and T. J. Tofflemire: The problem of PCB’s in the Hudson River system. In Health effects of halogenated aromatic hydrocarbons. Ann. N.Y. Acad. Sci. 320, 591 (1979).PubMedGoogle Scholar
  76. Hunt, E. G.: Biological magnification of pesticides. Symp. Sci. Aspects Pest Contr. Publ. #1402, p. 251. National Academy of Sciences, Washington, D.C. (1966).Google Scholar
  77. Hunt, E., and A. Bischoff: Inimical effects on wildlife of periodic DDD applications to Clear Lake. Calif. Fish Game 46, 91 (1960).Google Scholar
  78. Hussain, M., and E. L. Bleiler: Mercury in Australian oysters. Marine Pollut. Bull. 4, 44 (1973).Google Scholar
  79. International Joint Commission: Report of the aquatic ecosystem objectives committee. Great Lakes Science Advisory Board (1980).Google Scholar
  80. Isensee, A. R.: Variability of aquatic model ecosystem-derived data. Interhat. J. Environ. Stud. 10, 35 (1976).Google Scholar
  81. — Bioaccumulation of 2,3,7,8-tetrachlorodibenzo-para-dioxin. Ecol. Bull. 27, 255 (1978).Google Scholar
  82. —,and G. E. Jones: Distribution of 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD) in aquatic model ecosystem. Environ. Sci. Technol. 9, 668 (1975).Google Scholar
  83. —, and R. S. Yockim: Freshwater micro-ecosystem development and testing of substitute chemicals. U.S. Environmental Protection Agency Environmental Research Laboratory, Duluth, MN. EPA-600/3–80-008 (1980).Google Scholar
  84. —, E. R. Haider, E. A. Woolson, and G. E. Jones: Soil persistence and aquatic bioaccumulation potential of hexachlorobenzene (HCB). J. Agr. Food Chem. 24, 1210(1976).Google Scholar
  85. —, P. C. Kearney, E. A. Woolson, G. E. Jones, and V. P. Williams: Distribution of alkyl arsenicals in model ecosystem. Environ. Sci. Technol. 7, 841 (1973).Google Scholar
  86. Jarvinen, A. W., M. J. Hoffman, and T. W. Thorslund: Long-term toxic effect of DDT food and water exposure on fathead minnows (Pimephales promelas). J. Fish. Res. Board Can. 34, 2089 (1977).Google Scholar
  87. Jennings, J. R., and P. S. Rainbow: Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory. I. Accumulation from seawater and a food source. Mar. Biol. 50, 131 (1979).Google Scholar
  88. Jensen, S., and A. Jernelov: Biological methylation of mercury in aquatic organisms. Nature 223, 753 (1969).PubMedGoogle Scholar
  89. Jernelov, A.: Mercury and food chains. In R. Hartung and B. D. Dinman (eds.): Environmental mercury contamination, p. 174. Ann Arbor Science Publ., Inc., MI (1972).Google Scholar
  90. —, and H. Lann: Mercury accumulation in food chains. Oikos 22, 403 (1971).Google Scholar
  91. Johnson, B. T.: Laboratory procedure for estimating residue dynamics of xenobiotic contaminants in a freshwater food chain. Techn. Pap. Fish and Wildl. Serv. #103. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. (1980).Google Scholar
  92. —, C. R. Saunders, H. O. Sanders, and R. S. Campbell: Biological magnification and degradation of DDT and aldrin by freshwater invertebrates. J. Fish. Res. Board Can. 28, 705 (1971).Google Scholar
  93. Joyner, T., and R. Eisler: Retention and translocation of radioactive zinc by salmon fin- gerlings. Growth 25, 151 (1961).PubMedGoogle Scholar
  94. Kalmaz, E. V., and G. D. Kalmaz: Transport, distribution and toxic effects of polychlorinated biphenyls in ecosystems: Rev. Ecol. Modell. 6, 223 (1979).Google Scholar
  95. Kearney, P. C., E. A. Woolson, A. R. Isensee, and C. S. Helling: Tetrachlorodibenzodi- oxin in the environment: Sources, fate, and decontamination. Environ. Health Perspect. 5, 273 (1973).PubMedGoogle Scholar
  96. Kenaga, E. E.: Guidelines for environmental study of pesticides: Determination of bioconcentration potential. Residue Reviews 44, 77 (1972).Google Scholar
  97. — Correlation of bioconcentration factors of chemicals in aquatic and terrestrial organisms with their physical and chemical properties. Environ. Sci. Technol. 14, 553 (1980).Google Scholar
  98. —, and C. A. I. Goring: Relationships between water solubility, soil sorption, octanol-water partitioning and concentration of chemicals in biota. In J. G. Eaton, P. R. Parrish and A. C. Hendricks (eds.): Aquatic toxicology, p. 78. ASTM STP 707, American Society for Testing and Materials (1980).Google Scholar
  99. Kobayashi, K., H. Akitake, and K. Manabe: Relation between toxicity and accumulation of various chlorophenols in goldfish. Bull. Japan. Soc. Sci. Fish. 45, 173 (1979).Google Scholar
  100. Konemann, H., and K. Van Leeuwen: Toxicokinetics in fish: Accumulation and elimination of six chlorobenzene by guppies. Chemosphere 9, 3 (1980).Google Scholar
  101. Kopp, J. F., and R. C. Kroner: Trace metals in waters of the United States. Division of Pollution Surveillance, Federal Water Pollution Control Administration, U.S. Dept. Interior, Cincinnati, OH (1970).Google Scholar
  102. Leo, A., C. Hansch, and D. Elkins: Partition coefficients and their uses. Chem. Rev. 71, 525 (1971).Google Scholar
  103. Lowmann, F. G., T. R. Rice, and F. A. Richards: Accumulation and redistribution of radionuclides by marine organisms. In Radioactivity in the marine environment, p. 161. National Academy of Sciences, Washington, D.C. (1971).Google Scholar
  104. Lu, P-Y., and R. L. Metcalf: Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ. Health Perspect. 10, 269 (1975).PubMedGoogle Scholar
  105. — —, N. Plummer, and D. Mandel: The environmental fate of three carcinogens: Benzo(a:)-pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch. Environ. Contam. Toxicol. 6, 129 (1977).PubMedGoogle Scholar
  106. Macek, K. J., and S. Korn: Significance of the food chain in DDT accumulation by fish. J. Fish. Res. Board Can. 27, 1496 (1970).Google Scholar
  107. —, S. R. Petrocelli, and B. H. Sleight, III: Considerations in assessing the potential for, and significance of, biomagnification of chemical residues in aquatic food chains. In L. L. Marking and R. A. Kimmerle (eds.): Aquatic toxicology, p. 251. ASTM STP 667, American Society for Testing and Materials (1979).Google Scholar
  108. —, C. R. Rodgers, D. L. Stalling, and S. Korn: The uptake, distribution and elimination of dietary 14C-DDT and 14C-Dieldrin in rainbow trout. Trans. Amer. Fish Soc. 99, 689 (1970).Google Scholar
  109. Maki, A. W., K. L. Dickson, J. Cairns, Jr. (eds.): Biotransformation and fate of chemicals in the aquatic environment. American Society for Microbiology, Washington, D.C. (1979).Google Scholar
  110. Mason, J. W., and D. R. Rowe: The accumulation and loss of dieldrin and endrin in the eastern oyster. Arch. Environ. Contam. Toxicol. 4, 349 (1976).PubMedGoogle Scholar
  111. Matsumura, F.: Absorption, accumulation, and elimination of pesticides by aquatic organisms. Environ. Sci. Res. 10, 77 (1977).Google Scholar
  112. —, Y. G. Doherty, K. Furukawa, and G. M. Boush: Incorporation of 203Hg into methylmercury in fish liver: Studies on biochemical mechanisms in vitro. Environ. Res. 10, 224 (1975).PubMedGoogle Scholar
  113. Mayer, F. L.: Residue dynamics of di-2-ethylhexyl phthalate in fathead minnows (Pimephales promelas). J. Fish. Res. Board Can. 33, 2610 (1976).Google Scholar
  114. —, and H. O. Sanders: Toxicology of phthalic acid esters in aquatic organisms. Environ. Health Perspect. 3, 153 (1973).PubMedGoogle Scholar
  115. McLeese, D. W., C. D. Metcalf, and D. S. Pezzack: Bioaccumulation of chlorobiphenyls and endrin from food by lobsters (Homarus americanus). Bull. Environ. Contam. Toxicol. 25, 161 (1980).PubMedGoogle Scholar
  116. Merlini, M., G. Pozzi, A. Brazzelli, and A. Berg: The transfer of 65Zn from natural and synthetic foods to a freshwater fish. In Radioecology and Energy Resources, p. 226. Spec. Publ. No. 1., Ecological Society of America (1976).Google Scholar
  117. Mertz, W.: The essential trace elements. Science 213, 1332 (1981).PubMedGoogle Scholar
  118. Metcalf, R. L., and J. R. Sanborn: Pesticides and environmental quality in Illinois. 111. Nat. Hist. Surv. Bull. 31, 381 (1975).Google Scholar
  119. —, J. R. Sanborn, P.-Y. Lu, and D. Nye: Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri-, tetra-, and pentachlorobiphenyl compared with DDE. Arch. Environ. Contam. Toxicol. 3, 151 (1975).PubMedGoogle Scholar
  120. —, G. M. Booth, C. K. Schuth, D. J. Hansen, and P.-Y. Lu: Uptake and fate of di-2-ethylhexyl phthalate in aquatic organisms and in a model ecosystem. Environ. Health Perspect. 4, 27 (1973 a).PubMedGoogle Scholar
  121. —, I. P. Kapoor, P.-Y. Lu, C. K. Schuth, and P. Sherman: Model ecosystem studies of the environmental fate of six organochlorine pesticides. Environ. Health Perspect. 4, 35 (1973 b).PubMedGoogle Scholar
  122. Miller, R. A., L. A. Norris, and C. L. Hawkes: Toxicity of 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) in aquatic organisms. Environ. Health Perspect. 5, 177 (1973).PubMedGoogle Scholar
  123. Moore, R., E. Toro, M. Stanton, and M. A. Q. Khan: Absorption and elimination of 14Calpha-and gamma-chlordane by a freshwater alga, daphnid, and goldfish. Arch. Environ. Contam. Toxicol. 6, 411 (1977).PubMedGoogle Scholar
  124. Musial, C. J., J. F. Uthe, G. R. Sirota, and B. G. Burns: Di-n-hexylphthalate (DHP), a newly identified contaminant in Atlantic herring (Clupea harengus) and Atlantic mackerel (Scomber scombrus). Can. J. Fish. Aquat. Sci. 38, 856 (1981).Google Scholar
  125. Nadeau, R. J., and R. A. Davis: Polychlorinated bi-phenyls in the Hudson River (Hudson Falls-Fort Edward, New York State). Bull. Environ. Contam. Toxicol. 16, 436 (1976).Google Scholar
  126. Narbonne, J. F.: Accumulation of polychlorinated biphenyl (Phenoclor DP6) by estuarine fish. Bull. Environ. Contam. Toxicol. 22, 60 (1979).PubMedGoogle Scholar
  127. Neely, W. B., D. B. Branson, and G. E. Blau: Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8,1113 (1974).Google Scholar
  128. Norstrom, R. J., D. J. Hallett, and R. A. Sonstegard: Coho salmon (Oncorhynchus kisutch) and herring gulls (Larus argentatus) as indicators of organochlorine contamination in Lake Ontario. J. Fish. Res. Board Can. 35, 1401 (1978).Google Scholar
  129. —, A. E. McKinnon, and A. S. W. deFreitas: A bioenergetic-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens). J. Fish. Res. Board Can. 33, 248 (1976).Google Scholar
  130. Obana, H., S. Hon, T. Kashimoto, and N. Kunita: Polycyclic aromatic hydrocarbons in human fat and liver. Bull. Environ. Contam. Toxicol. 27, 23 (1981).PubMedGoogle Scholar
  131. Olsson, M. S. Jensen, and L. Reutergard: Seasonal variation of PCB levels in fish: Important factor in planning aquatic monitoring programs. Ambio 7, 66 (1978).Google Scholar
  132. Panel on Mercury: An assessment of mercury in the environment. Committee for Scientific and Technical Assessments of Environmental Pollutants. National Research Council, National Academy of Science, Washington, D.C. (1978).Google Scholar
  133. Panel on Nickel: Nickel. Committee on Medical and Biologic Effects of Environmental Pollutants. National Research Council, National Academy of Science, Washington, D.C. (1975).Google Scholar
  134. Paris, D. F., W. C. Steen, and G. L. Baughman: Role of physico-chemical properties of Archlors 1016 and 1242 in determining their fate and transport in aquatic environments. Chemosphere 4, 319 (1978).Google Scholar
  135. Parrish, P. R., E. E. Dyar, J. M. Enos, and W. G. Wilson: Chronic toxicity of chlordane, trifuralin, and pentachlorophenol to sheepshead minnows (Cyprinodon variegatus). U.S. Environmental Protection Agency, Gulf Breeze, FL, EPA Ecol. Res. Ser. EPA-600/3–78-010 (1978).Google Scholar
  136. —, S. C. Schimmel, D. J. Hansen, J. M. Patrick, Jr., and J. Forester: Chlordane: Effects on several estuarine organisms. J. Toxicol. Environ. Health 1, 485 (1976).PubMedGoogle Scholar
  137. Pastel, M., B. Bash, and J.S. Kim: Accumulation of polychlorinated biphenyls in American shad during their migration in the Hudson River, spring 1977. Pest. Monit. J. 14, 11 (1980).Google Scholar
  138. Pavlou, S. P., and R. N. Dexter: Physical and chemical aspects of the distribution of polychlorinated biphenyls in the aquatic environment. In L. L. Marking and R. A. Kimble (eds.): Aquatic toxicology, p. 195. ASTM STP 667, American Society for Testing and Materials (1979 a).Google Scholar
  139. — — Distribution of polychlorinated biphenyls (PCB) in estuarine ecosystems: Testing the concept of equilibrium partitioning in the marine environment. Environ. Sci. Technol. 13, 65 (1979 b).Google Scholar
  140. Penrose, W. R., H. B. S. Conacker, R. Black, J. C. Meranger, W. Miles, H. M. Cunningham, and W. R. Squires: Implications of inorganic/organic interconversion on fluxes of arsenic in marine food webs. Environ. Health Perspect. 19, 53 (1977).PubMedGoogle Scholar
  141. Petrocelli, S. F., and J. W. Anderson: Biomagnification of dieldrin residues by food-chain transfer from clams to blue crabs under controlled conditions. Bull. Environ. Contam. Toxicol. 13, 108 (1975).PubMedGoogle Scholar
  142. Phillips, G. R., and D. R. Buhler: The relative contributions of methylmercury from food or water to rainbow trout (Salmo gairdneri) in a controlled laboratory environment. Trans. Amer. Fish. Soc. 107, 853 (1978).Google Scholar
  143. —, and R. C. Russo: Metal bioaccumulation in fishes and aquatic invertebrates: A literature review. U.S. Environmental Protection Agency Environmental Research Laboratory, Duluth, MN. EPA-600/3–78-103 (1978).Google Scholar
  144. —, T. E. Lenhart, and R. W. Gregory: Relation between trophic position and mercury accumulation among fishes from the Tongue River Reservoir, Montana. Environ. Res. 22, 73 (1980).PubMedGoogle Scholar
  145. Potter, L., D. Kidd, and D. Standiford: Mercury levels in Lake Powell. Bioamplification of mercury in man-made desert reservoir. Environ. Sci. Technol. 9, 41 (1975).Google Scholar
  146. Pringle, B. H., D. E. Hissong, E. L. Katz, and S. T. Mulawka: Trace metal accumulation by estuarine mollusks. J. Sanit. Eng. Div. [ASCE], 94, 455 (1968).Google Scholar
  147. Rehwoldt, R., and D. Karimian-Teherani: Uptake and effect of cadmium on zebrafish. Bull. Environ. Contam. Toxicol. 15, 442 (1976).PubMedGoogle Scholar
  148. Reinert, R. E.: The accumulation of dieldrin in an algal (Scenedesmus obliquus), daphnia (Daphnia magna), guppy (Lebistes reticulatus) food chain. Diss. Abstr. 28, 2210-B (1967).Google Scholar
  149. — Pesticide concentrations in Great Lakes fish. Pest. Monit. J. 3, 233 (1970).Google Scholar
  150. Renfro, W. C., S. W. Fowler, M. Heyraud, and J. LaRosa: Relative importance of food and water in long-term zinc65 accumulation by marine biota. J. Fish. Res. Board Can. 32, 1339 (1975).Google Scholar
  151. Requejo, A. G., R. H. West, P. G. Hatcher, and P. A. McGillivary: Polychlorinated biphenyls and chlorinated pesticides in soils of the Everglades National Park and adjacent agricultural areas. Environ. Sci. Technol. 13, 931 (1979).Google Scholar
  152. Roesijadi, G., J. W. Anderson, and J. W. Blaylock: Uptake of hydrocarbons from marine sediments contaminated with Prudhoe Bay crude oil: Influence of feeding type of test species and availability of polycyclic aromatic hydrocarbons. J. Fish. Res. Board Can. 35, 608(1978).Google Scholar
  153. Sanborn, J. R., W. F. Childers, and R. L. Metcalf: Uptake of three polychlorinated biphenyls, DDT, and DDE by the green sunfish, Lepomis cyanellus Raf. Bull. Environ. Contam. Toxicol. 13, 209 (1975 a).Google Scholar
  154. —, and, R. L. Metcalf, C. C. Yu, and P.-Y. Lu: Plasticizers in the environment: The fate of di-N-octyl phthalate (DOP) in two model ecosystems and uptake and metabolism of DOP by aquatic organisms. Arch. Environ. Contam. Toxicol. 3, 244 (1975 b).PubMedGoogle Scholar
  155. Sanders, H. O., F. L. Mayer, Jr., and D. F. Walsh: Toxicity, residue dynamics, and reproductive effects of phthalate esters in aquatic invertebrates. Environ. Res. 6, 84 (1973).PubMedGoogle Scholar
  156. Sandholm, M., H. E. Oksaren, and L. Pesonen: Uptake of selenium by aquatic organisms. Limnol. Oceanogr. 18, 496(1973).Google Scholar
  157. Satsmadjis, J., and G. P. Gabrielides: Observations on the concentration levels of chlorinated hydrocarbons in a Mediterranean fish. Marine Pollut. Bull. 10, 109 (1979).Google Scholar
  158. Saward, D., A. Stirling, and G. Topping: Experimental studies on the effects of copper on a marine food chain. Mar. Biol. 29, 351 (1975).Google Scholar
  159. Schell, W. R., and R. S. Barnes: Lead and mercury in the aquatic environment of western Washington State. In Alan J. Rubin (ed.): Aqueous environmental chemistry of metals, p. 129, Chap. 3. Ann Arbor Science Publishers Inc., Ann Arbor, MI (1976).Google Scholar
  160. Schimmel, S. C., J. M. Patrick, Jr., and J. Forester: Heptachlor: Uptake, depuration, retention, and metabolism by spot, Leiostromus xanthurus. J. Toxicol. Environ. Health 2, 169 (1976).PubMedGoogle Scholar
  161. — —, and A. J. Wilson, Jr.: Acute toxicity to and bioconcentration of endosulfan by estuarine animals. In F. L. Mayer and J. L. Hamelink (eds.): Aquatic toxicology and hazard evaluation, p. 241. ASTM STP 634, American Society for Testing and Materials (1977).Google Scholar
  162. Schnoor, J. L.: Fate and transport of dieldrin in Coralville Reservoir: Residues in fish and water following a pesticide ban. Science 211, 840 (1981).PubMedGoogle Scholar
  163. Schuth, C. K., A. R. Isensee, E. A. Woolson, and P. C. Kearney: Distribution of 14C and arsenic derived from [14C] cacodylic acid in an aquatic ecosystem. J. Agr. Food Chem. 22, 99 (1974).Google Scholar
  164. Scura, E. D., and G. H. Theilacker: Transfer of chlorinated hydrocarbon PCB in a laboratory marine food chain. Mar. Biol. 40, 317 (1977).Google Scholar
  165. Shea, P. J., H. J. Strek, and J. B. Weber: Polychlorinatedbiphenyls: Absorption and bioaccumulation by goldfish (Carassius auratus) and inactivation by activated carbon. Chemosphere 9, 157 (1980).Google Scholar
  166. Shuster, C. N., Jr., and B. H. Pringle: Trace metal accumulation by the American eastern oyster, Crassostrea virginica. Proc. Nat. Shellfish Assoc. 59, 91 (1969).Google Scholar
  167. Skea, J. C., H. A. Simonin, H. J. Dean, J. R. Coloquhoun, J. J. Spagnoli, and G. D. Veith: Bioaccumulation of Aroclor 1016 in Hudson River fish. Bull. Environ. Contam. Toxicol. 22, 332 (1979).PubMedGoogle Scholar
  168. Slonim, A. R.: Acute toxicity of beryllium sulfate to the common guppy. J. Water Pollut. Control Fed. 45, 2110 (1973).PubMedGoogle Scholar
  169. Southworth, G. R., J. J. Beauchamp, and P. K. Schmieden: Bioaccumulation potential of polycyclic aromatic hydrocarbons in Daphnia pulex. Water Res. 12, 973 (1978).Google Scholar
  170. —, C. C. Keffer, and J. J. Beauchamp: Potential and realized bioconcentration. A comparison of observed and predicted bioconcentration of azaarenes in fathead minnow (Pimephales promelas). Environ. Sci. Technol. 14, 1529 (1980).Google Scholar
  171. —, B. R. Parkhurst, and J. J. Beauchamp: Accumulation of acridine from water, food, and sediment by the fathead minnow, Pimephales promelas. Water Air Soil Pollut. 12, 331 (1979).Google Scholar
  172. Spacie, A., and J. L. Hamelink: Alternative models for describing the bioconcentration of organics in fish. Environ. Toxicol. Chem. 1, 309 (1982).Google Scholar
  173. Stalling, D. L., J. W. Hogan, and J. L. Johnson: Phthalate ester residues—their metabolism and analysis in fish. Environ. Health Perspect. 3, 159 (1973).PubMedGoogle Scholar
  174. Stara, J., D. Kello, and P. Durkin: Human health hazards associated with chemical contamination of aquatic environments. Environ. Health Perspect. 34, 145 (1980).PubMedGoogle Scholar
  175. Stewart, J., and M. Schulz-Baldes: Long-term lead accumulation in abalone (Haliotis spp.) fed on lead-treated brown algae (Egregia laevigat ). Mar. Biol. 36, 19 (1976).Google Scholar
  176. Swartz, R. C., and H. Lee, II: Biological processes affecting the distribution of pollutants in marine sediments. Part I: Accumulation, trophic transfer, biodégradation and migration. In R. A. Baker (ed.): Contaminants and sediments, Vol. 2, p. 533. Ann Arbor Sci., MI (1980).Google Scholar
  177. Terhaar, C. T., W. S. Ewell, S. P. Dziuba, W. W. White, and P. J. Murphy: A laboratory model for evaluating the behavior of heavy metals in an aquatic environment. Water Res. 11, 101 (1977).Google Scholar
  178. Thomann, R. V.: Equilibrium model of fate of microcontaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci. 38, 280 (1981).Google Scholar
  179. Train, R. E.: Pesticide products containing heptachlor or chlordane: Intent to cancel registrations. Fed. Register 39, 41298 Nov. 26 (1974).Google Scholar
  180. — Order and determination of the administrator that reconsideration of the agency’s prior order of cancellation of DDT for use on cotton is not warranted. Fed. Register 40, 15934 April 8 (1975).Google Scholar
  181. United States Environmental Protection Agency: Agency’s interim cancer procedures and guidelines for health risk and economic impact assessments of suspect carcinogens. Fed. Register 41, 21402 (1976).Google Scholar
  182. — Water quality criteria documents: Availability. Fed. Register 45, 79318 Nov. 28 (1980).Google Scholar
  183. United States Food and Drug Administration: Tolerances for pesticides in food administered by the Environmental Protection Agency. Title 21 part 193. In Code of Federal Regulations. Office of the Federal Register, Washington, D.C. (1981).Google Scholar
  184. Urey, J. C., J. C. Kricher, and J. M. Boylan: Bioconcentration of four PCB isomers by Chlorellapyrenoidosa. Bull. Environ. Contam. Toxicol. 16, 81 (1976).PubMedGoogle Scholar
  185. Vanderploeg, H. A., D. C. Parzyck, W. H. Wilcox, J. R. Kercher, and S. V. Kaye: Bioaccumulation factors for radionuclides in freshwater biota. Publ. #783,Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN. ORNL—5002 (1975).Google Scholar
  186. Varanasi, U., and D. Markey: Effect of calcium on retention of lead in fish skin. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 36, 772 (1977).Google Scholar
  187. Veith, G. D., D. L. DeFoe, and B. V. Bergstedt: Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. Board Can. 36, 1040 (1979).Google Scholar
  188. —, K. J. Macek, S. R. Petrocelli, and J. Carroll: An evaluation of using bioconcentration factors for organic chemicals in fish. In J. G. Eaton, R. R. Parrish, and A. C. Hendricks (eds.): Aquatic toxicology, p. 116. ASTM STP 707,American Society for Testing and Materials (1980).Google Scholar
  189. Walsh, P. R., R. A. Duce, and J. L. Fasching: Considerations of the enrichment, sources and flux of arsenic in the troposphere. J. Geophys. Res. 84, 1719 (1979).Google Scholar
  190. Weininger, D.: Accumulation of PCB’s by lake trout in Lake Michigan. Diss. Abstr. 39, 1323 (1978).Google Scholar
  191. Westoo, G.: Methylmercury as percentage of total mercury in flesh and viscera of salmon and sea trout of various ages. Science 181, 567 (1973).PubMedGoogle Scholar
  192. Williams, P. M., and H. V. Weiss: Mercury in the marine environment: Concentration in sea water and in a pelagic food chain. J. Fish. Res. Board Can. 30, 293 (1973).Google Scholar
  193. Willis, J. N., and N. Y. Jones: The use of uniform labeling with zinc-65 to measure stable zinc turnover in the mosquito fish, Gambusia affinis. I. Retention. Health Phys. 32, 381 (1977).Google Scholar
  194. Wilson, A. J.: Chemical assays. In Annual Report of the Bureau of Commercial Fisheries Biology Laboratory, p. 6. Gulf Breeze, FL. U.S. Bureau of Commercial Fisheries Circ. #247 (1963).Google Scholar
  195. Windom, H., R. Stickney, R. Smith, D. White, and F. Taylor: Arsenic, cadmium, copper, mercury, and zinc in some species of North Atlantic finfish. J. Fish. Res. Board Can. 30, 275 (1973).Google Scholar
  196. Wofford, H. W., C. D. Wilsey, G. S. Neff, C. S. Giam, and J. M. Neff: Bioaccumulation and metabolism of phthalate esters by oysters, brown shrimp, and sheepshead minnows. Ecotoxicol. Environ. Saf. 5, 202 (1981).PubMedGoogle Scholar
  197. Woodwell, G. M.: Toxic substances and ecological cycles. Sci. Amer. 216, 24 (1967).PubMedGoogle Scholar
  198. —, P. Craig, and H. Johnson: DDT in the biosphere: Where does it go? Science 174, 1101 (1971).PubMedGoogle Scholar
  199. —, C. F. Wurster, Jr., and P. A. Isaacson: DDT residues in an east coast estuary: A case of biological concentration of a persistent insecticide. Science 156, 821 (1967).PubMedGoogle Scholar
  200. Woolson, E. A.: Bioaccumulation of arsenicals. In Arsenical Pesticides, p. 97. Amer. Chem. Soc. Symp. Ser. #7 (1975).Google Scholar
  201. —, A. R. Isensee, and P. C. Kearney: Distribution and isolation of radioactivity from74As-arsenate and 14C-methanearsenic acid in an aquatic model ecosystem. Pest. Biochem. Physiol. 6, 261 (1976).Google Scholar
  202. Wszolek, P. C., D. J. Lisk, T. Wachs, and W. D. Youngs: Persistence of polychlorinated biphenyls and 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p’-DDE) with age in lake trout after 8 years. Environ. Sci. Technol. 13, 1269 (1979).Google Scholar
  203. Wyman, K. D., and H. B. O’Connor, Jr.: Implications of short term PCB uptake by small estuarine copepods (Genus Acartia) from PCB contaminated water, inorganic sediments and phytoplankton. Estuarine Coastal Mar. Sci. II, 121 (1980).Google Scholar
  204. Yockim, R. S., A. R. Isensee, and G. E. Jones: Distribution and toxicity of TCDD and 2,4,5-T in an aquatic model ecosystem. Chemosphere 7, 215 (1978).Google Scholar
  205. Yoshida, T., and H. Kojima: Studies on environmental safety of di-isopropylnaphthalene (DIPN). Part I. Bioconcentration of 14C-DIPN in carp. Chemosphere 6, 491 (1978).Google Scholar
  206. Young, M. L.: The transfer of 65Zn and 59Fe along a Fucus serratus (L.)—Littorina dotusat (L.) food chain. J. Mar. Biol. Assoc. U.K. 55, 583 (1977).Google Scholar
  207. — The roles of food direct uptake from water in the accumulation of zinc and iron in the tissues of the Dogwhelk Nucella lapillus (L.). J. Exp. Mar. Biol. Ecol. 30, 315 (1977).Google Scholar
  208. Zaroogian, G. E., and S. Cheer: Accumulation of cadmium by the American oyster, Crassostrea virginica. Nature 261, 408 (1976).PubMedGoogle Scholar
  209. Zitko, V.: Polychlorinated biphenyls and organochlorine pesticides in some freshwater and marine fishes. Bull. Environ. Contam. Toxicol. 6, 464 (1971).PubMedGoogle Scholar
  210. — The accumulation of polybrominated biphenyls by fish. Bull. Environ. Contam. Toxicol. 17, 285 (1977).PubMedGoogle Scholar
  211. —, and W. G. Carson: Uptake and excretion of chlorinated biphenyl ethers and rominated toluenes by fish. Chemosphere 6, 293 (1977).Google Scholar
  212. —, and O. Hutzinger: Uptake of chlorobiphenyls and bromo-biphenyls,Hexachloro-bromobenzene, and hexabromobenzene by fish. Bull. Environ. Contam. Toxicol. 16, 665 (1976).PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • Gregory R. Biddinger
  • Steven P. Gloss
    • 1
  1. 1.New York Cooperative Fishery Research UnitCornell UniversityIthacaUSA

Personalised recommendations