Advertisement

Structure of Ribosomes and Their Components by Advanced Techniques of Electron Microscopy and Computer Image Analysis

  • M. Boublik
  • G. T. Oostergetel
  • J. S. Wall
  • J. F. Hainfeld
  • M. Radermacher
  • T. Wagenknecht
  • A. Verschoor
  • J. Frank
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

High-resolution electron microscopy plays a leading role in the structural analysis of biological macromolecules and is the most direct method for obtaining detailed information on the morphology, topography of the components, and functional sites of ribosomes. Electron microscopy (EM) has been important also for the interpretation of data obtained by a variety of physico-chemical techniques (for references see Chambliss et al., 1980; Liljas, 1982; Wittmann, 1983) on ribosomal protein locations, relative protein-protein distances, and protein-RNA binding sites, data which are more valuable when mapped within a well-defined structural framework provided, at present, by EM.

Keywords

Ribosomal Subunit Electron Energy Loss Spectroscopy Dictyostelium Discoideum Baby Hamster Kidney Baby Hamster Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzécri, J.P. (1969). Statistical analysis as a tool to make patterns emerge from data. In: Methologies of pattern recognition, ed. Watanabe, s. Academic Press, New York, pp. 35–74.Google Scholar
  2. Boublik, M., Hellmann, W. (1978). Comparison of Artemia salina and Escherichia coli ribosome structure by electron microscopy. Proc. Natl. Acad. Sci. USA 75: 2829–2833.CrossRefGoogle Scholar
  3. Boublik, M., Hellmann, W., Jenkins, F. (1982a). Structural homology of ribosomes by electron microscopy. Proc. 10th International Congress on Electron Microscopy, Hamburg 3: 95–96.Google Scholar
  4. Boublik, M., Hellmann, W., Kleinschmidt, A.K. (1977). Size and structure of E. coli ribosomes by electron microscopy. Cytobiologie 14: 293–300.Google Scholar
  5. Boublik, M., Oostergetel, G.T., Frankland, B., Ottensmeyer, F.P. (1984). Topographical mapping of ribosomal RNAs in situ by electron spectroscopic imaging. Proc. 42nd Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 690–691.Google Scholar
  6. Boublik, M., Ramagopal, S. (1980). Conformation of ribosomes from the vegetative amoebae and spores of Dictyostelium discoideum. Mol. Gen. Genet 179: 483–488.PubMedCrossRefGoogle Scholar
  7. Boublik, M., Robakis, N., Hellmann, W., Wall, J.S. (1982b). Electron microscopic study of free and ribosome bound rRNAs from E. coli. Eur. J. Cell Biol 27: 177–184.Google Scholar
  8. Boublik, M., Thornton, G., Oostergetel, G.T., Hainfeld, J.F., Wall, J.S. (1983). Conformation of eukaryotic ribosomal RNAs. Proc. 41st Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, In., pp. 592–593.Google Scholar
  9. Breitenreuter, G., Lotti, M., Stöffler-Meilicke, M., Stöffler, G. (1984). Comparative electron microscopic study on the location of ribosomal proteins S3 and S7 on the surface of the E. coli 30 S subunit using monoclonal and conventional antibody. Mol. Gen. Genet 197: 189–195.Google Scholar
  10. Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L., Nomura, M., eds. (1980). Ribosomes. Structure, function and genetics. University Park Press, Baltimore.Google Scholar
  11. Chan, Y.L., Olvera, J., Wool, I.G. (1983). The structure of rat 28 S ribosomal ribonucleic acids inferred from the sequence of nucleotides in a gene. Nucl. Acids Res 11: 7819–7831.PubMedCrossRefGoogle Scholar
  12. Frank, J. (1980). The role of correlation techniques in computer image processing. In: Computer processing of electron microscopic images, ed. Hawkes, P.W. Springer-Verlag, Berlin, pp. 187–222.Google Scholar
  13. Frank, J., Goldfarb, W. (1980). Methods for averaging of single molecules and lattice fragments. In: Electron microscopy at molecular dimensions, ed. Baumeister, W., Vogell, W. Springer-Verlag, Berlin, pp. 261–269.Google Scholar
  14. Frank, J., Goldfarb, W., Eisenberg, D., Baker, T.S. (1978). Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3: 283–290.PubMedCrossRefGoogle Scholar
  15. Frank, J., Van Heel, M. (1982). Averaging techniques and correspondence analysis. Proc. 10th International Congress on Electron Microscopy, Hamburg 1: 107–114.Google Scholar
  16. Frank, J., Verschoor, A., Boublik, M. (1981). Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214: 1353–1355.PubMedCrossRefGoogle Scholar
  17. Frank, J., Verschoor, A., Boublik, M. (1982). Multivariate statistical analysis of ribosome electron micrographs. J. Mol. Biol 161: 107–137.PubMedCrossRefGoogle Scholar
  18. Hadjiolov, A.A., Georgiev, O.I., Nosikov, V.V., Yavachev, L.P. (1984). Primary and secondary structure of rat ribosomal RNA. Nucl. Acids Res 12: 3677–3693.PubMedCrossRefGoogle Scholar
  19. Hassouna, W., Michot, B., Bachellerie, J.-P. (1984). The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acids Res 12: 3563–3583.PubMedCrossRefGoogle Scholar
  20. Hoppe, W., Hegerl, R. (1980). Three-dimensional structure determination by electron microscopy (non-periodic specimens). In: Computer processing of electron microscopic images, ed. Hawkes, P.W. Springer-Verlag, Berlin, pp. 127–185.Google Scholar
  21. Knauer, V., Hegerl, R., Hoppe, W. (1983). Three-dimensional reconstruction and averaging of 30 S ribosomal subunits of Escherichia coli from electron micrographs. J. Mol. Biol 163: 409–430.PubMedCrossRefGoogle Scholar
  22. Lake, J.A. (1976). Ribosomal structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol 105: 131–159.PubMedCrossRefGoogle Scholar
  23. Liljas, A. (1982). Structure studies of ribosomes. Biophys. Mol. Biol 40: 161–228.CrossRefGoogle Scholar
  24. Michot, B., Hassouna, N., Bachellerie, J.-P. (1984). Secondary structure of mouse 28 S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucl. Acids Res 12: 4259–4279.PubMedCrossRefGoogle Scholar
  25. Ottensmeyer, F.P. (1984). Electron energy loss analysis and imaging in biology. Proc. 42nd Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 340–343.Google Scholar
  26. Oostergetel, G.T., Wall, J.S., Hainfeld, J.F., Boublik, M. (1985). Quantitative structural analysis of eukaryotic ribosomal RNA by scanning transmission electron microscopy. Proc. Natl. Acad. Sci. USA 82: 5598–5602.PubMedCrossRefGoogle Scholar
  27. Radermacher, M., Frank, J. (1984). Representation of objects reconstructed in three dimensions by surface of equal density. J. Microsc 136: 77–85.PubMedCrossRefGoogle Scholar
  28. Radermacher, M., Wagenknecht, T., Verschoor, A., Frank, J. (1986). A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc. 141:RP1.Google Scholar
  29. Ramagopal, S., Ennis, H.L. (1981). Regulation of synthesis of cell-specific ribosomal proteins during differentiation of Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 78: 3083–3087.PubMedCrossRefGoogle Scholar
  30. Saenger, W. (1984). RNA structure. In: Principles of nucleic acid structure, ed. Cantor, C.R. Springer-Verlag New York, Inc.Google Scholar
  31. Stoffler, G., Stoffler-Meilicke, M. (1984). Immunoelectron microscopy of ribosomes. Ann. Rev. Biophys. Bioeng 13: 303–330.CrossRefGoogle Scholar
  32. Tischendorf, G.W., Zeichardt, H., Stoffler, G. (1974). Determination of the localization of proteins L14, L17, L18, L19, L22 and L23 on the surface of the 50S ribosomal of Escherichia coli by immune electron microscopy. Mol. Gen. Genet 134: 187–208.PubMedCrossRefGoogle Scholar
  33. Van Heel, M. (1983). Three-dimensional reconstruction of the 30S E. coli ribosomal subunits. Proc. 41st Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 460–461.Google Scholar
  34. Van Heel, M., Frank, J. (1981). Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6: 187–194.PubMedGoogle Scholar
  35. Van Heel, M., Stöffler-Meilicke, M. (1982). Classification of images of the E. coli 30 S ribosomal subunit. Proc. 10th International Congress on Electron Microscopy, Hamburg 1: 107–114.Google Scholar
  36. Vasiliev, V.D., Selivanova, O.M., Baranov, V.l., Spirin, A.S. (1983). Structural study of translating 70S ribosomes from Escherichia coli. FEBS Lett. 155: 167–172.PubMedCrossRefGoogle Scholar
  37. Verschoor, A., Frank, J., Radermacher, M., Wagenknecht, T., Boublik, M. (1984a). Three-dimensional reconstruction of the 30 S ribosomal subunit from randomly oriented particles. J. Mol. Biol 178: 677–698.PubMedCrossRefGoogle Scholar
  38. Verschoor, A., Frank, J., Wagenknecht, T. (1984b). Computer averaging of E. coli 70S monosome. Proc. 8th Europ. Congress on Electron Microscopy, Budapest 2: 1461–1462.Google Scholar
  39. Verschoor, A., Frank, J., Wagenknecht, T., Boublik, M. (1983). Three-dimensional reconstruction of the 40 S ribosomal subunits from randomly oriented particles. Proc. 41st Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 758–759.Google Scholar
  40. Verschoor, A., Frank, J., Wagenknecht, T., Boublik, M. (1983). Three-dimensional reconstruction of the 40 S ribosomal subunits from randomly oriented particles. Proc. 41st Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 758–759.Google Scholar
  41. Verschoor, A., Frank, J., Wagenknecht, T., Boublik, M. (1986b). Computer averaged views of the 70S monosome from Escherichia coli. J. Mol. Biol 187: 581–590.PubMedCrossRefGoogle Scholar
  42. Wabl, M.R., Barends, P.J., Nanninga, N. ( 1973 a). Tilting experiments with negatively stained E. coli ribosomal subunits. An electron microscopic study. Cytobiologie 7: 1–9.Google Scholar
  43. Wabl, M.R., Doberer, H.G., Höglund, S., Ljung, L. (1973b). Electron microscopic study of isolated 30 S ribosomal subunits of Escherichia coli. Cytobiologie 7: 111–115.Google Scholar
  44. Wagenknecht, T., Frank, J., Boublik, M., Ofengand, J. (1984). Localization of the decoding region of the Escherichia coli small ribosomal subunit by electron microscopy and image averaging. Proc. 8th European Congress on Electron Microscopy, Budapest 2: 1357–1358.Google Scholar
  45. Wall, J.S. (1979). Biological scanning transmission electron microscopy. In: Introduction to analytical electron microscopy, ed. Hren, J.J., et al. Plenum Press, New York and London, pp. 303–342.Google Scholar
  46. Wall, J.S., Hainfeld, J.F., Bartlett, P.A., Singer, S.J. (1982). Observation of an undecylgold cluster compound in the scanning transmission electron microscope. Ultramicroscopy 8: 397–402.CrossRefGoogle Scholar
  47. Wall, J.S., Hainfeld, J.F., Chung, K. (1985). Carbon films that wet without glow discharge. Proc. 43rd Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G.W. San Francisco Press, Inc., pp. 716–717Google Scholar
  48. Wittmann, H.G. (1983). Architecture of prokaryotic ribosomes. Ann. Rev. Biochem 52: 35–65.PubMedCrossRefGoogle Scholar
  49. Woese, C.R., Gutell, R., Gupta, R., Noller, H.F. (1983). Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev 47: 621–669.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • M. Boublik
  • G. T. Oostergetel
  • J. S. Wall
  • J. F. Hainfeld
  • M. Radermacher
  • T. Wagenknecht
  • A. Verschoor
  • J. Frank

There are no affiliations available

Personalised recommendations