Ribosome Structure, Function, and Evolution: Mapping Ribosomal RNA, Proteins, and Functional Sites in Three Dimensions

  • M. Oakes
  • E. Henderson
  • A. Scheinman
  • M. Clark
  • J. A. Lake
Part of the Springer Series in Molecular Biology book series (SSMOL)


Major advances have been made in recent years in our understanding of the structure, function, and evolution of ribosomes. One notes that the overall three-dimensional structures of ribosomes and ribosomal subunits are known; the primary and secondary structures of the rRNA are known for many diverse organisms; the approximate locations of many ribosomal proteins and of some sequences of the ribosomal RNAs are known; many aspects of ribosome function have been related to ribosome structure; and, finally, comparative studies of ribosomes have revealed some of the early steps in the evolution of ribosomes and of the cells that contain them.


Ribosomal Protein Large Subunit Small Subunit Ribosomal Subunit Large Ribosomal Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernabeu, C., Lake, J.A. (1982a) Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc. Natl. Acad. Sci. USA 79: 3111–3115.PubMedCrossRefGoogle Scholar
  2. Bernabeu, C., Lake, J.A. (1982b). Packing of 70S ribosomes in dimers found at low ionic strength. J. Mol. Biol 160: 369373.Google Scholar
  3. Bernabeu, C., Tobin, E., Fowler, A., Zabin, I., Lake, J.A. (1983) Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes. J. Cell Biol 96: 1471–1474.PubMedCrossRefGoogle Scholar
  4. Boublik, M., Hellmann, W. (1978). Comparison of Artemia salina and Escherichia coli ribosome structure by electron microscopy. Proc. Natl. Acad. Sci. USA 75: 2829–2833.CrossRefGoogle Scholar
  5. Boublik, M., Hellmann, W., Roth, E.H. (1976). Localization of ribosomal proteins L7L12 in the 50S subunit of Escherichia coli ribosomes by electron microscopy. J. Mol. Biol 107: 479–490.PubMedCrossRefGoogle Scholar
  6. Clark, W., Lake, J.A. (1983). Unusual rRNA-linked complex of 50S ribosomal subunits isolated from an Escherichia coli RNase III mutant. J. Bact 157: 971–974.Google Scholar
  7. Clark, M.W., Leonard, K., Lake, J.A. (1982). Ribosomal crystalline arrays of large subunits from Escherichia coli. Science, 216: 999–1000.PubMedCrossRefGoogle Scholar
  8. Dabbs, E.R., Ehrlich, R., Hasenbank, R., Schroeter, B.-H., Stöffler-Meilicke, M., Stöffler, G. (1981). Mutants of Escherichia coli lacking ribosomal protein LI. J. Mol. Biol 149: 553–578.PubMedCrossRefGoogle Scholar
  9. Emanuilov, I., Sabatini, D.D. (1981). Surface features and handedness of a model for the eukaryotic small ribosomal subunit. Ultrastructure Research 76: 263–276.CrossRefGoogle Scholar
  10. Emanuilov, I., Sabatini, D.D., Lake, J.A., Freienstein, C. (1978). Localization of eukaryotic initiation factor 3 on native small ribosomal subunits. Proc. Natl. Acad. Sci. USA 75: 1389–1393.PubMedCrossRefGoogle Scholar
  11. Evstafieva, A.G., Shatsky, I.N., Bogdanov, A.A., Semenkov, Y.P., Vasiliev, V.D. (1983). Localization of 5′ and 3′ ends of the ribosome bound segment of template polynucleotides by immune electron microscopy. EMBO Journal 2: 799–804.PubMedGoogle Scholar
  12. Frank, J., Verschoor, A., Boublik, M. (1981). Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214: 1353–1355.PubMedCrossRefGoogle Scholar
  13. Girshovich, A.S., Kurtschaliov, T.V., Ovchinnikov, Yu. A., Vasiliev, V.D. (1981). Localization of the elongation factor G on Escherichia coli ribosome. FEBS Letters 130: 54–59.PubMedCrossRefGoogle Scholar
  14. Henderson, E.H., Oakes, M., Clark, M., Lake, J.A., Matheson, A., Zillig, W. (1984). A new ribosome structure. Science 225: 510–512.PubMedCrossRefGoogle Scholar
  15. Johnson, A.E., Fairclough, R.H., Cantor, C.R. (1977). Some approaches for the study of ribosome-tRNA interactions. In: Nucleic Acid-Protein Recognition, ed. Vogel, H.J., Academic Press, New York, pp. 469–490.Google Scholar
  16. Kahan, L., Winkelmann, D.A., Lake, J.A. (1981). Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron microscopy. J. Mol. Biol 145: 193–214.PubMedCrossRefGoogle Scholar
  17. Kastner, B., Stöffler-Meilicke, M., Stöffler, G. (1981). Arrangement of the subunits in the ribosome of Escherichia coli: demonstration by immunoelectron microscopy. Proc. Natl. Acad. Sci. USA 78: 6652–6656.PubMedCrossRefGoogle Scholar
  18. Keren-Zur, M., Boublik, M., Ofengand, J. (1979). Localization of the decoding region on the 30S Escherichia coli ribosomal subunit by affinity immunoelectron microscopy. Proc. Nat. Acad. Sci. USA 76: 1054–1058.PubMedCrossRefGoogle Scholar
  19. Lake, J.A., Pendergast, M., Kahan, L., Nomura, M. (1974b). Localization of Escherichia coli ribosomal proteins S4 and S14 by electron microscopy of anti-body-labeled subunits. Proc. Natl. Acad. Sci 71: 4688–4692.PubMedCrossRefGoogle Scholar
  20. Lake, J.A. (1976). Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol 105: 131–159.PubMedCrossRefGoogle Scholar
  21. Lake, J.A. (1977). Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc. Natl. Acad. Sci. USA 74: 1903–1907.PubMedCrossRefGoogle Scholar
  22. Lake, J.A. (1979). Ribosome structure and tRNA binding sites. In: Transfer RNA: structure, properties and recognition. Cold Spring Harbor Press, New York, pp. 393–411.Google Scholar
  23. Lake, J.A. (1979a). Ribosome structure and functional sites. In: Ribosomes, structure, function and genetics, eds. Chambliss et al., University Park Press, Baltimore, pp. 201–236.Google Scholar
  24. Lake, J.A. (1981a). The Ribosome. Scientific American 245: 84–97.PubMedCrossRefGoogle Scholar
  25. Lake, J.A. (1981b). Protein synthesis in prokaryotes and eukaryotes: the structural bases. In: Electron Microscopy of Proteins, ed. Harris, R., Academic Press, London, pp. 167–195.Google Scholar
  26. Lake, J.A. (1982). Ribosomal subunit orientations determined in the monomeric ribosome by single and by double-labeling immune electron microscopy. J. Mol. Biol 161: 89–106.PubMedCrossRefGoogle Scholar
  27. Lake, J.A. (1985). Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes. Ann. Rev. Biochem 54: 507–530.PubMedCrossRefGoogle Scholar
  28. Lake, J.A., Clark, M.W., Henderson, E., Fay, S., Oakes, M., Scheinman, A., Thornber, P., Mah, R.A. (1985). Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc. Natl. Acad. Sci. USA 82: 3716–3720.PubMedCrossRefGoogle Scholar
  29. Lake, J.A., Henderson, E., Oakes, M., Clark, M.W. (1984). Eocytes: a new ribo-some structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl. Acad. Sci. USA 81: 3786–3790.PubMedCrossRefGoogle Scholar
  30. Lake, J.A., Henderson, E., Clark, M.C., Matheson, A. (1982). Mapping evolution with ribosome structure: intralineage constancy and interlineage variation. Proc. Natl. Acad. Sci. USA 79: 5948–5952.PubMedCrossRefGoogle Scholar
  31. Lake, J.A., Kahan, L. (1975). Ribosomal proteins S5, Sll, S13 and S19 localized by electron microscopy of antibody-labeled subunits. J. Mol. Biol 99: 631–644.PubMedCrossRefGoogle Scholar
  32. Lake, J.A., Nonomura, Y., Sabatini, D.D. (1974a). Ribosome structure as studied by electron microscopy. In: Ribosomes, eds. Nomura, M. et al., Cold Spring Harbor Press, New York, pp. 543–557.Google Scholar
  33. Lake, J.A., Pendergast, M., Kahan, L., Nomura, M. (1974c). Ribosome structure: three dimensional distribution of proteins S14 and S4. J. Supramolec. Struct 2: 189–195.CrossRefGoogle Scholar
  34. Lake, J.A., Strycharz, W.A. (1981). Ribosomal proteins LI, L17, L27 from Escherichia coli localized at single sites on the large subunit by immune electron microscopy. J. Mol. Biol 153: 979–992.PubMedCrossRefGoogle Scholar
  35. Langer, J.A., Jurnak, F., Lake, J.A. (1984). Elongation factor Tuternary complex binds to small ribosomal subunits in a functionally active state. Biochemistry 23: 6171–6178.PubMedCrossRefGoogle Scholar
  36. Lotti, M., Dabbs, E.R., Hasenbank, R., Stoffler-Meilicke, M., Stoffler, G. (1983). Characterization of a mutant from Escherichia coli lacking protein LI 5 and localization of protein LI5 by immunoelectron microscopy. Mol. Gen. Genet 192: 295–300.PubMedCrossRefGoogle Scholar
  37. Lutsch, G., Noll, F., Theise, H., Enzmann, G., Bielka, H. (1979). Localization of proteins SI, S2, SI6 and S23 on the surface of small subunits of rat liver ribosomes by immune electron microscopy. Mol. Gen. Genet 176: 281–291.PubMedGoogle Scholar
  38. Marquis, D., Fahnestock, S., Henderson, E., Woo, D., Schwinge, S., Clark, M., Lake, J.A. (1981). The L1/L12 stalk, a conserved feature of the prokaryotic ribosome, is attached to the large subunit through its N-terminus. J. Mol. Biol 150: 121–132.PubMedCrossRefGoogle Scholar
  39. Moore, P.B., Engelman, D.M., Langer, J.A., Ramakrishnan, V.R., Schindler, D.G., Schoenborn, B.P., Siller, I.-Y., Yabuki, S. (1982). Neutron scattering and the 30S ribosomal subunits of Escherichia coli. In: Brookhaven National Laboratories Neutron Symposium.CrossRefGoogle Scholar
  40. Noller, H.F., Lake, J.A. (1984). Ribosome structure and function: localization of rRNA. In: Membrane Structure and Function, vol. 6, ed. Bittar, E. John Wiley and Sons, New York, pp. 217–297.Google Scholar
  41. Nomura, M., Mizushima, S., Ozaki, M., Traub, P., Lowry, C.V. (1969). Structure and function of ribosomes and their molecular components. Cold Spring Harbor Symp. Quant. Biol 34: 49–61.PubMedGoogle Scholar
  42. Oakes, M., Clark, M., Henderson, E., Lake, J.A. (1986). DNA hybridization electron microscopy: ribosomal RNA nucleotides 1392–1407 are exposed in the cleft of the small subunit. Proc. Natl. Acad. Sci. USA 83: 275–279.PubMedCrossRefGoogle Scholar
  43. Olson, H.M., Glitz, D.G. (1979). Ribosome structure: localization of 3′ end of RNA in small subunit by immunoelectron microscopy. Proc. Natl. Acad. Sci. USA 76: 3769–3773.PubMedCrossRefGoogle Scholar
  44. Olson, H.M., Grant, P.G., Cooperman, B.S., Glitz, D.H. (1982) Immunoelectron microscopic localization of puromycin binding on the large subunit of the Escherichia coli ribosome. J. Biol. Chem 257: 2649–2656.PubMedGoogle Scholar
  45. Politz, S.M., Glitz, D.G. (1977) Ribosome structure: Localization of N6, N6-dimethyladenosine by electron microscopy of a ribosome-antibody complex. Proc. Natl. Acad. Sci. USA 74: 1468–1472.PubMedCrossRefGoogle Scholar
  46. Shatsky, I.N., Evstafieva, A.G., Bystrova, A.A., Bogdanov, A.A., Vasiliev, V.D. (1980). Topography of RNA in the ribosome: location of the 3′-end of 5S RNA on the central protuberance of the 50S subunit. FEBS Lett. 121: 97–100.PubMedCrossRefGoogle Scholar
  47. Shatsky, I.N., Mochalova, L.V., Kojouharova, M.S., Bogdanov, A.A., Vasiliev, V.D. (1979). Localization of the 3’-end of Escherichia coli 16S RNA by electron microscopy of antibody-labelled subunits. J. Mol. Biol 133: 501–515.PubMedCrossRefGoogle Scholar
  48. Stöffler-Meilicke, M., Epe, B., Steinhauser, K.G., Wooley, P., Stöffler, G. (1983). Immunoelectron microscopy of ribosomes carrying a fluorescence label in a defined position. Location of proteins SI7 and L6 in the ribosome of Escherichia coli. FEBS Lett. 163: 94–98.PubMedCrossRefGoogle Scholar
  49. Stöffler-Meilicke, Stöffler, G., Odom, O.W., Zinn, A., Kramer, G., Hardesty, B. (1982). Localization of 3′-ends of 5S and 23S rRNA’s in reconstituted subunits of Escherichia coli ribosomes. Proc. Natl. Acad. Sei. USA 78: 5538–5542.Google Scholar
  50. Stöffler-Meilicke, M., Noah, M., Stöffler, G. (1983) Location of eight ribosomal proteins on the surface of the 50S subunit from Escherichia coli. Proc. Natl. Acad. Sci. USA 80: 6780–6787.PubMedCrossRefGoogle Scholar
  51. Strycharz, W.A., Nomura, M., Lake, J.A. (1978). Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy. J. Mol. Biol 126: 123–140.PubMedCrossRefGoogle Scholar
  52. Tischendorf, G.W., Zeichardt, M., Stöffler, G. (1974). Determination of the location of proteins L14, L17, L18, L19, L22, and L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet 134: 187–208.PubMedCrossRefGoogle Scholar
  53. Tischendorf, G.W., Zeichardt, H., Stöffler, G. (1975). Architecture of the Escherichia coli ribosome as determined by immune electron microscopy. Proc. Natl. Acad. Sci. USA 72: 4820–4824.PubMedCrossRefGoogle Scholar
  54. Trempe, M.R., Ohgi, K., Glitz, D.G. (1982). Localization of 7-Methylguanosine in the small subunits of Escherichia coli and chloroplast ribosomes by immunoelectron microscopy. J. Biol. Chem 257: 9822–9829.PubMedGoogle Scholar
  55. Unwin, P.N.T. (1979). Attachment of ribosome crystals to intracellular membranes. J. Mol. Biol 132: 69–84.PubMedCrossRefGoogle Scholar
  56. Vasiliev, V.D. (1974) Morphology of the ribosomal 30S subparticle according to electron microscopic data. Acta Biol. Med. Germ 33: 779–793.PubMedGoogle Scholar
  57. Vasiliev, V.D., Seiivanova, O.M., Ryazantsev, S.N. (1983b). Structure of the Escherichia coli 50S ribosomal subunit. J. Mol. Biol 171: 561–569.PubMedCrossRefGoogle Scholar
  58. Vasiliev, V.D., Seiivanova, O.M., Baranov, V.l., Spirin, A.S. (1983a). Structural study of translating 70S ribosomes from Escherichia coli I. Electron microscopy. FEBS Lett. 1557: 167–172.CrossRefGoogle Scholar
  59. Wabl, M.R. (1974). Microscopic localization of two proteins on the surface of the 50S ribosomal subunit of Escherichia coli using specific antibody markers. J. Mol. Biol 84: 241–247.PubMedCrossRefGoogle Scholar
  60. Winkelman, D., Kahan, L., Lake, J.A. (1982). Ribosomal protein S4 is an internal protein: localization by immune electron microscopy on protein deficient subribosomal particles. Proc. Natl. Acad. Sci. USA 79: 5189–5198.CrossRefGoogle Scholar
  61. Woese, C.R. (1981). Archaebacteria. Sci. Am 244: 98–122.CrossRefGoogle Scholar
  62. Woese, C.R., Fox, G.E. (1977). Phylogenic structure of the prokaryotic domain: the primary kingdom. Proc. Natl. Acad. Sci. USA 74: 5088–5090.PubMedCrossRefGoogle Scholar
  63. Yuki, A., Brimacombe, R. (1975). Nucleotide sequences of Escherichia coli 16-S RNA associated with ribosomal proteins S7, S9, S10, S14 and S19. Eur. J. Biochem 56: 23–27.PubMedCrossRefGoogle Scholar
  64. Zillig, W., Schnabel, R., Stetter, K.O. (1985). Archaebacteria and the origin of the eukaryotic cytoplasm. Curr. Topics Microbiol 114: 1–18.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • M. Oakes
  • E. Henderson
  • A. Scheinman
  • M. Clark
  • J. A. Lake

There are no affiliations available

Personalised recommendations