Diapause and Related Phenomena in Culex Mosquitoes: Their Relation to Arbovirus Disease Ecology

  • Bruce F. Eldridge
Part of the Current Topics in Vector Research book series (VECTOR, volume 4)


Most mosquitoes in the genus Culex appear to overwinter as inseminated female adults, although individuals that have actually been observed overwintering in nature represent only a few species. Moreover, searches for such relatively common species as Culex salinarius Coquillett and C. restuans Theobald have repeatedly been unsuccessful. Aside from the importance of mosquito diapause as a biological phenomenon, there has been considerable interest in the subject because of the possibility that overwintering female mosquitoes may serve as hibernal reservoirs of arboviruses causing human and animal diseases (33, 81). Two North American mosquito-borne arboviruses of public health importance are transmitted by species of the genus Culex: St. Louis encephalitis (SLE) by C. pipiens Linneaus and C. tarsalis Coquillett, and western equine encephalomyelitis (WEE) transmitted by C. tarsalis. In Asia, C. tritaeniorhynchus Giles is the vector of Japanese encephalitis (JE) in temperate regions. Until the convincing demonstration of transovarial transmission of an arbovirus by a species of mosquito (115), few biomedical scientists gave much credence to the idea that mosquitoes played an important role as winter reservoirs of arboviruses. The isolation of SLE virus from overwintering Culex pipiens (3) focused attention on Culex mosquitoes in this context, although these isolations were not novel.


Blood Meal Juvenile Hormone Ovarian Development Culex Pipiens Culex Mosquito 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.W., and Harwood, R.F. 1966, Cold tolerance in adult female Culex tarsalis (Coquillett), Mosq. News 26:1–7.Google Scholar
  2. 2.
    Anderson, W.A., and Spielman, A., 1971, Permeability of the ovarian follicle of Aedes aegypti mosquitoes, J. Cell Biol. 50:201–221.PubMedGoogle Scholar
  3. 3.
    Bailey, C.L., Eldridge, B.F., Hayes, D.E., Watts, D.M., Tammariello, R.F., and Dalrymple, J.M., 1978, Isolation of St. Louis encephalitis virus from overwintering Culex pipiens mosquitoes, Science 199:1346–1349.PubMedGoogle Scholar
  4. 4.
    Bailey, C.L., Faran, M.E., Gargan, T.P., and Hayes, D.E., 1982, Winter survival of blood-fed and non blood-fed Culex pipiens L., Am. J. Trop. Med. Hyg. 31:1054–1061.PubMedGoogle Scholar
  5. 5.
    Baker, F.C., Hagedorn, H.H., Schooley, D.A., and Wheelock, G., 1983, Mosquito juvenile hormone: Identification and bioassay activity, J. Insect Physiol. 29:465–470.Google Scholar
  6. 6.
    Barr, A.R., 1982, The Culex pipiens complex, in: W.W.M. Steiner, W.J. Tabachnick, K.S. Rai, and S. Narang (eds.), Recent Developments in the Genetics Of Insect Disease Vectors, Stipe, Champaign, Illinois, pp. 551–572.Google Scholar
  7. 7.
    Beach, R. 1979. Mosquitoes: Biting behavior inhibited by ecdysone, Science 205:829–831.PubMedGoogle Scholar
  8. 8.
    Beck, S.D., 1980, Insect Photoperiodism, 2nd ed., Academic Press, New York. 387 pp.Google Scholar
  9. 9.
    Bell, W.J., and Barth, R.H., Jr., 1970. Quantitative effects of juvenile hormone on reproduction in the cockroach Byrsotria fumigata, J. Insect Physiol. 16:2302–2313.Google Scholar
  10. 10.
    Bellamy, R.E., and Reeves, W.C., 1963, The winter biology of Culex tarsalis (Diptera: Culicidae) in Kern County, California, Ann. Entomol. Soc. Am. 56:314–323.Google Scholar
  11. 11.
    Bennington, E.E., Blackmore, J.S., and Sooter, C.A., 1958a. Soil temperature and emergence of Culex tarsalis from hibernation, Mosq. News 18:297–298.Google Scholar
  12. 12.
    Bennington, E.E., Sooter, C.A., and Baer, H., 1958b. The diapause in adult female Culex tarsalis Coquillett, Mosq. News 18:299–304.Google Scholar
  13. 13.
    Berg, M., and Lang, S., 1948, Observations of hibernating mosquitoes in Massachusetts, Mosq. News 8:70–71.Google Scholar
  14. 14.
    Blackmore, J.S., and Winn, J.F., 1956, A winter isolation of western equinevencephalitis virus from hibernating Culex tarsalis Coq., Soc. Exp. Biol. Med. Proc. 91:146–148.Google Scholar
  15. 15.
    Boissezon, P. de., 1929, Remarques sur le conditions de la reproduction chez Culex pipiens L. pendant la periode hivemale, Bull. Soc. Pathol. Exot. 22:549–552.Google Scholar
  16. 16.
    Boissezon, P. de., 1930, Influence de la temperature sur la biologie des culicides, Bull. Soc. Zool. Fr. 55:155–261.Google Scholar
  17. 17.
    Boissezon, P. de., 1934, Nouvelles experiences sur la biologie de Culex pipiens L., Ann. Parasitol. Hum. Comp. 12:182–192.Google Scholar
  18. 18.
    Buffington, J.D., 1972, Hibernaculum choice in Culex pipiens, J. Med. Entomol. 9:128–132.PubMedGoogle Scholar
  19. 19.
    Buffington, J.D., and Zar, J.H., 1968, Changes in fatty acid composition of Culex pipiens pipiens during hibernation, Ann. Entomol. Soc. Am. 61:774–775.PubMedGoogle Scholar
  20. 20.
    Bullock, H.R., Murdoch, W.P., Fowler, H.W., and Brazzel, H.R., 1959, Notes on the overwintering of Culex tritaeniorhynchus Giles in Japan, Mosq. News 19:184–188.Google Scholar
  21. 21.
    Burdick, D.J., and Kardos, E.H., 1963, The age structure of fall, winter, and spring populations of Culex tarsalis in Kern County, California, Ann. Entomol. Soc. Am. 56:527–535.Google Scholar
  22. 22.
    Buxton, P.A., 1935, Changes in the composition of adult Culex pipiens during hibernation, Parasitolog 27:263–265.Google Scholar
  23. 23.
    Case, T.J., Washino, R.K., and Dunn, R.L., 1977, Diapause termination in Anopheles freeborni with juvenile hormone mimics, Entomol. Exp. Appl. 21:155–162.Google Scholar
  24. 24.
    Chapman, H.C., 1959, Overwintering larval populations of Culex erythrothorax in Nevada, Mosq. News 19:244–246.Google Scholar
  25. 25.
    Chapman, H.C., 1961, Abandoned mines as overwintering sites for mosquitoes, especially Culex tarsalis Coq. in Nevada, Mosq. News 21:234–237.Google Scholar
  26. 26.
    Clements, A.N., 1963, The Physiology of Mosquitoes, Macmillan, New York. 393 pp.Google Scholar
  27. 27.
    Clements, A.N., and Boocock, M.R., 1984, Ovarian development in mosquitoes: Stages of growth and arrest, and follicular resorption, Physiol. Entomol. 9:1–8.Google Scholar
  28. 28.
    Danilevskii, A.S., and Glinyananya, E.I., 1958, The dependence of the gonotrophic cycle and imaginal diapause of blood sucking mosquitoes on variation in day-length, Uch. Zap. Leningr. Gos. Univ, 240, Sere Biol. Nauk 46:34–51.Google Scholar
  29. 29.
    Eberle, M.W., and Reisen, W.K., 1986, Studies on autogeny in Culex tarsalis: la. Selection and genetic experiments, J. Am. Mosq. Control Assoc. 2:38–43.PubMedGoogle Scholar
  30. 30.
    Eldridge, B.F., 1963, The influence of daily photoperiod on bloodfeeding activity of Culex tritaeniorhynchus Giles, Am. J. Hyg. 77:49–53.Google Scholar
  31. 31.
    Eldridge, B.F., 1966, Environmental control of ovarian development in mosquitoes of the Culex pipiens complex, Science 151:826–828.PubMedGoogle Scholar
  32. 32.
    Eldridge, B.F., 1968, The effect of temperature and photoperiod on bloodfeeding and ovarian development in mosquitoes of the Culex pipiens complex, Am. J. Trop. Med. Hyg. 17:133–140.PubMedGoogle Scholar
  33. 33.
    Eldridge, B.F., 1981, Vector maintenance of pathogens in adverse environments (with special reference to mosquito maintenance of arboviruses), in: J.J. McKelvey, Jr., B.F. Eldridge, and K. Maramorosch (eds.), Vectors of Disease Agents, Praeger, New York, pp. 143–157.Google Scholar
  34. 34.
    Eldridge, B.F., and Bailey, C.L., 1979, Experimental hibernation studies in Culex pipiens (Diptera: Culicidae): Reactivation of ovarian development and blood-feeding in prehibernating females, J. Med. Entomol. 15:462–467.PubMedGoogle Scholar
  35. 35.
    Eldridge, B.F., Bailey, C.L., and Johnson, M.D., 1972, A preliminary study of the seasonal geographic distribution and overwintering of Culex restuans Theobald and Culex salinarius Coquillett, J. Med. Entomol. 9:133–238.Google Scholar
  36. 36.
    Eldridge, B.F., Johnson, M.D., and Bailey, C.L., 1976, Comparative studies of two North American mosquito species, Culex restuans and Culex salinarius: Response to temperature and photoperiod in the laboratory, Mosq. News 36:506–513.Google Scholar
  37. 37.
    Francy, D.B., Rush, W.A., Montoya, M., Inglish, D.S., and Bolin, R.A., 1981, Transovarial transmission of St. Louis encephalitis virus by Culex pipiens mosquitoes, Am. J. Trop. Med. Hyg. 30:699–705.PubMedGoogle Scholar
  38. 38.
    Guilvard, E., Reggie, M. de, and Rioux, J.-A., 1984, Changes in ecdysteroid and juvenile hormone titers correlated to the initiation of vitellogenesis in two Aedes species (Diptera: Culicidae), Gen. Comp. Endocrinol. 53:218–223.PubMedGoogle Scholar
  39. 39.
    Hardy, J.L., Rosen, L., Reeves, W.C., Scrivani, R.P., and Presser, S.B., 1984, Experimental transovarial transmission of St. Louis encephalitis virus by Culex and Aedes mosquitoes, Am. J. Trop. Med. Hyg. 33:166–175.PubMedGoogle Scholar
  40. 40.
    Harwood, R.F., 1962, Trapping overwintering adults of the mosquito Culex tarsalis and Anopheles freeborni, Mosq. News 22:26–31.Google Scholar
  41. 41.
    Harwood, R.F., 1966, The relationship between photoperiod and autogeny in Culex tarsalis, Entomol. Exp. Appl. 9:327–331.Google Scholar
  42. 42.
    Harwood, R.F., and Halfhill, J.E., 1964, The effect of photoperiod on fat body and ovarian development of Culex tarsalis, Ann. Entomol. Soc. Am. 57:596–600.Google Scholar
  43. 43.
    Hayashi, K., Mifune, K., Shichijo, A., Suzuki, H., Matsuo, S., Makino, Y., Akashi, M., Wada, Y., Oda, T., Mogi, M., and Mori, A., 1975, Ecology of Japanese encephalitis virus in Japan. III. The results of investigation in Amami Island, southern part of Japan, from 1973 to 1975, Trop. Med (Nagasaki) 17:129–142. [Cited in 82.]Google Scholar
  44. 44.
    Hayles, L.B., Weegnar, H.H., Iversen, J.O., and McLintock, J., 1979, Overwintering sites of adult mosquitoes in Saskatchewan, Mosq. News 39:117–120.Google Scholar
  45. 45.
    Hecht, O., 1932, Experimentelle Beitrage zur Biologie der Stechmucken, Z. Angew. Entomol. 19:578–607.Google Scholar
  46. 46.
    Hecht, O., 1933, Die Blutnahrung, die Erzeugung der Eier und die Uberwinterung der Stechmuckenweibehen, Arch. Sch. Trop. Pathol. Ther. Exot. Krankh. 37(B 3):1–87.Google Scholar
  47. 47.
    Holzapfel, C.M., and Bradshaw, W.E., 1981, Geography of larval dormancy in the tree-hole mosquito, Aedes triseriatus (Say), Can. J. Zool. 59:1014–1021.Google Scholar
  48. 48.
    Hudson, J.E., 1978, Overwintering sites and ovarian development of some mosquitoes in central Alberta, Mosq. News 38:570–579.Google Scholar
  49. 49.
    Jordan, R.G., and Bradshaw, W.E., 1978, Geographic variation in the photoperiodic response of the western tree-hole mosquito, Aedes sierrensis, Ann. Entomol. Soc. Am. 71:487–490.Google Scholar
  50. 50.
    Jumars, P.A., Murphey, F.J., and Lake, R.W., 1969, Can blood-fed Culex pipiens L. overwinter? Proc. N.J. Mosq. Exterm. Assoc. 56:219–225.Google Scholar
  51. 51.
    Kawai, S., 1969, Studies on the follicular development and feeding activity of the females of Culex tritaeniorhynchus with special reference to those of autumn, Trop. Med. (Nagasaki) 11:145–169.Google Scholar
  52. 52.
    Keener, G.G., Jr., 1952, Observations on overwintering of Culex tarsalis Coquillett (Diptera, Culicidae) in western Nebraska, Mosq. News 12:205–209.Google Scholar
  53. 53.
    Klowden, M.J., 1983, The physiological control of mosquito host-seeking behavior, in K.H. Harris (ed.), Current Topics in Vector Research, Praeger, New York, Vol. 1, pp. 93–116.Google Scholar
  54. 54.
    Klowden, M.J., and Lea, A.O., 1979, Abdominal distention terminates subsequent host-seeking behaviour of Aedes aegypti following a blood meal, J. Insect Physiol. 25:583–585.PubMedGoogle Scholar
  55. 55.
    Kuchlein, J.H., and Ringelberg, J., 1964, Further investigations on the distribution of hibernating Culex pipiens pipiens L. (Diptera, Culicidae) in artificial marlcaves in South Limburg (Netherlands), Entomol. Exp. Appl. 7:25–46.Google Scholar
  56. 56.
    LaFace, L., 1926, Richerche sulla biologica del Culex pipiens. L’alimentazione e l’ivernamento, Riv. Malariol. 5:132–156.Google Scholar
  57. 57.
    Lea, A.O., Briegel, H., and Lea, H.M., 1978. Arrest, resorption, or maturation of oocytes in Aedes aegypti: Dependence on the quantity of blood and the interval between blood meals, Physiol. Entomol. 3:319–316.Google Scholar
  58. 58.
    Lee, H.W., 1971, Study on overwintering mechanisms of Japanese encephalitis virus in Korea, J. Korean Med. Assoc. 14:871.Google Scholar
  59. 59.
    Lomax, J.L., 1967, Fall mosquito breeding and hibernation in an area of the Delaware River survey, Proc. N.J. Mosq. Exterm. Assoc. 54:170–178.Google Scholar
  60. 60.
    Lomax, J.L., 1968, A study of mosquito mortality relative to temperature and relative humidity in an overwintering site, Proc. N.J. Mosq. Exterm. Assoc. 55:81–85.Google Scholar
  61. 61.
    Madder, D.J., Surgeoner, G.A., and Helson, B.V., 1981, Induction of diapauses in Culex pipiens and C. restuans (Diptera: Culcidae) in southern Ontario, Can. Entomol. 115:877–883.Google Scholar
  62. 62.
    Mail, A.G., and McHugh, R.A., 1961, Relation of temperature and humidity to winter survival of Culex pipiens and Culex tarsalis, Mosq. News 21:252–254.Google Scholar
  63. 63.
    Mansingh, D., 1971, Physiological classification of dormancies in insects, Can. Entomol. 103:983–1009.Google Scholar
  64. 64.
    Meola, R.W., and Petralia, R.S., 1980, Juvenile hormone induction of biting behavior in Culex mosquitoes, Science 209:1548–1550.PubMedGoogle Scholar
  65. 65.
    Mitchell, C.J., 1979, Winter survival of Culex tarsalis (Diptera: Culicidae) hibernating in mine tunnels in Boulder County, Colorado, USA, J. Med. Entomol. 16:482–487.Google Scholar
  66. 66.
    Mitchell, C.J., 1981, Diapause termination, gonoactivity, and differentiation of host-seeking behavior from blood-feeding behavior in hibernating Culex tarsalis (Diptera: Culicidae), J. Med. Entomol. 5:386–394.Google Scholar
  67. 67.
    Mitchell, C.J., 1983, Differentiation of host-seeking behavior from bloodfeeding behavior in overwintering Culex pipiens (Diptera: Culicidae) and observations on gonotrophic dissociation, J. Med. Entomol. 20:157–163.PubMedGoogle Scholar
  68. 68.
    Moore, C.G., 1963, Seasonal variation in autogeny in Culex tarsalis Coq. In northern California, Mosq. News 23:238–241.Google Scholar
  69. 69.
    Nayar, J. K., 1982, Bionomics and physiology of Culex nigripalpus (Diptera: Culicidae) of Florida: An important vector of diseases, Florida Agricultural Experiment Station Bulletin No. 827. 73 pp.Google Scholar
  70. 70.
    Nelson, M.J., 1971, Mosquito studies (Diptera: Cullicidae) XXVI. Winter biology of Culex tarsalis in Imperial Valley of California, Contrib. Am. Entomol. Inst. 7:1–56.Google Scholar
  71. 71.
    Nieschulz, O., and Bos, A., 1931, Einige versuche mit uberwinterden Exemplaren von Culex pipiens, Zentralbl. Bakteriol. 84:364–368.Google Scholar
  72. 72.
    Oda, T., 1968, Studies on the follicular development and overwintering of the house mosquito, Culex pipiens pallens in Nagaski Area, Trop. Med. (Nagasaki) 10:195–216.Google Scholar
  73. 73.
    Oda, T., 1971, On the effect of the photoperiod and temperature on the feeding activity and follicular development of Culex pipiens pallens females, Trop. Med. (Nagasaki) 13:200–204.Google Scholar
  74. 74.
    Oda, T., and Kuhlow, F., 1974, Seasonal changes in gonoactivity of Culex pipiens pipiens in northern Germany and its response to day length and temperature, Tropenmed. Parasitol. 25:175–186.PubMedGoogle Scholar
  75. 75.
    Oda, T., and Kuhlow, F., 1976, Gonotrophische Dissoziation bei Culex pipiens L. Tropenmed. Parasitol. 27:101–105.PubMedGoogle Scholar
  76. 76.
    Oda, T., and Wada, Y., 1972, On the development of follicles after bloodfeeding in Culex pipiens pallens females where were reared under various enviromental conditions, Trop. Med. (Nagasaki) 14:65–70.Google Scholar
  77. 77.
    Oda, T., and Wada, Y., 1973, On the gonotrophic dissociation in Culex tritaeniorhynchus summarosus females under various conditions, Trop. Med. (Nagasaki) 15:189–195.Google Scholar
  78. 78.
    Oda, T., Wada, Y., and Mori, A., 1978, Follicular degeneration in unfed nulliparous females of Culex tritaeniorhynchus, Trop. Med. (Nagasaki) 20:113–122.Google Scholar
  79. 79.
    O’Meara, G.F., 1979, Variable expression of autogeny in three mosquito species, Int. J. Invertbr. Reprod. 1:253–261.Google Scholar
  80. 80.
    Peus, F., 1930, Zue Biologie der Hausmucke, Culex pipiens L., wahrend der Wintermonate, Z. Desinfekt, 22:410–414.Google Scholar
  81. 81.
    Reeves, W.C., 1974, Overwintering ofarboviruses, Prog. Med. Virol. 17:193–220.PubMedGoogle Scholar
  82. 82.
    Reeves, W.C., Bellamy, R.E., and Scrivani, R.P., 1958, Relationships of mosquito vectors to winter survival of encephalitis vectors. I. Under natural conditions, Am. J. Hyg. 67:78–79.PubMedGoogle Scholar
  83. 83.
    Reisen, W.K., 1986, Studies on autogeny in Culex tarsalis: 2. Simulated diapause induction and termination in genetically autogenous females, J. Am. Mosq. Control Assoc. 2:44–47.PubMedGoogle Scholar
  84. 84.
    Reisen, W.K., 1986, Overwintering studies on Culex tarsalis (Diptera: Culicidae) in Kern County, California: Life stages sensitive to diapause induction cues. Ann. Entomol. Soc. Am. 79:674–676.Google Scholar
  85. 85.
    Reisen, W.K., Meyer, R.O., and Milby, M.M., 1986, Overwintering studies on Culex tarsalis (Diptera: Culicidae) in Kern County, California: Survival and the experimental induction and termination of diapause, Ann. Entomol. Soc. Am. 79:664–673.Google Scholar
  86. 86.
    Reisen, W.K., Meyer, R.P., and Milby, M.M., 1986, Overwintering studies on Culex tarsalis (Diptera: Culicidae) Kern County, California: Temporal changes in abundance and reproduction status with comparative observations on C. quinquefasciatus (Diptera: Culicidae). Ann. Entomol. Soc. Am. 79:677–685.Google Scholar
  87. 87.
    Rosen, L., Shroyer, D.A., and Lien, J.H., 1980, Transovarial transmission of Japanese encephalitis virus by Culex tritaeniorhynchus mosquitoes, Am. J. Trop. Med. Hyg. 29:711–712.PubMedGoogle Scholar
  88. 88.
    Roubaud, E., 1923, Les desharmonies de la fonction renale et leurs consequences biologiques chez les mosquitoes, Ann. Inst. Pasteur 37:627–679.Google Scholar
  89. 89.
    Roubaud, E., 1982, Cycle autogene d’attente et generations hivernales suractives inapparentes chez les mostique commun Culex pipiens L., C.R. Acad. Sci. Paris 188:735–738.Google Scholar
  90. 90.
    Rush, W.A., 1962, Observations on an overwintering population of Culex tarsalis with notes on other species, Mosq. News 22:176–181.Google Scholar
  91. 91.
    Rush, W.A., Brennan, J.M., and Eklund, C.M., 1958, a natural hibernation site of the mosquito Culex tarsalis Coquillett in the Columbia River Basin, Washington, Mosq. News 18:288–293.Google Scholar
  92. 92.
    Sanburg, L.L., and Larsen, J.R., 1973, The effect of photoperiod and temperature on ovarian development in Culex pipiens pipiens L., J. Insect. Physiol. 19:1173–1190.PubMedGoogle Scholar
  93. 93.
    Schaefer, C.H., and Washino, R.K., 1969, Changes in the composition of lipids and fatty acids in adult Culex tarsalis and Anopheles freeborni during the overwintering period, J. Insect Physiol. 15:395–402.PubMedGoogle Scholar
  94. 94.
    Schaefer, C.H., and Washino, R.K., 1974, Lipid contents of some overwintering adult mosquitoes collected from different parts of northern California, Mosq. News 34:207–210.Google Scholar
  95. 95.
    Schaefer, C.H., Miura, T., and Washino, R.K., 1971, Studies on the overwintering biology of natural populations of Anopheles freeborni and Culex tarsalis in California, Mosq. News 31:153–157.Google Scholar
  96. 96.
    Schlesinger, R.W., 1980, Virus-host interactions in natural and experimental infections with alphaviruses and flaviviruses, in: R.W. Schlesinger, (ed.), The Toga viruses, Academic Press, New York, pp. 83–106.Google Scholar
  97. 97.
    Schlesinger, R.W., Stollar, V., Igarashi, A., Guild, G.M., and Cleaves, G.R., 1978, Natural life cycle of arthropodborne togaviruses: Inferences from cell culture methods. in: E. Kurstak and K. Maramorosch (eds.), Viruses and Environment, Academic Press, New York, pp. 281–298.Google Scholar
  98. 98.
    Shemanchuk, J.A., 1965, On the hibernation of Culex tarsalis Coquillett, Culiseta inornata Williston, and Anopheles earlei Vargus (Diptera: Culicidae) in Alberta, Mosq. News 25:456–462.Google Scholar
  99. 99.
    Skultab, S., and Eldridge, B.F., 1985, Ovarian diapause in Culex peus Speiser (Diptera: Culicidae), J. Med. Entomol. 22:454–458.PubMedGoogle Scholar
  100. 100.
    Slaff, M.E., and Crans, W.J., 1977, Parous rates of overwintering Culex pipiens pipiens in New Jersey, Mosq. News 37:11–14.Google Scholar
  101. 101.
    Slaff, M.E., and Crans, W.J., 1981, The activity and physiological status of pre- and post-hibernating Culex salinarius (Diptera: Culicidae) populations, J. Med. Entomol. 18:65–68.PubMedGoogle Scholar
  102. 102.
    Spielman, A., 1964, Studies on autogeny in Culex pipiens populations in nature. I. Reproductive isolation between autogenous and anautogenous populations, Am. J. Hyg. 80:175–183.PubMedGoogle Scholar
  103. 103.
    Spielman, A., 1971, Bionomics of autogenous mosquitoes, Annu. Rev. Entomol. 16:231–248.PubMedGoogle Scholar
  104. 104.
    Spielman, A., 1974, Effect of synthetic juvenile hormone on ovarian diapauses of Culex pipiens mosquitoes, J. Med. Entomol. 11:223–225.PubMedGoogle Scholar
  105. 105.
    Spielman, A., and Wong, J., 1973, Environmental control of ovarian diapauses in Culex pipiens, Ann. Entomol. Soc. Am. 66:905–907.Google Scholar
  106. 106.
    Spielman, A., and Wong, J., 1973, Studies on autogeny in natural populations of Culex pipiens. III. Midsummer preparation for hibernation in autogenous populations, J. Med. Entomol. 10:319–324.PubMedGoogle Scholar
  107. 107.
    Stollar, V., 1979, Defective interfering particles of togaviruses, Curr. Top. Microbiol. Immunol. 86:35–66.PubMedGoogle Scholar
  108. 108.
    Sulaiman, S., and Service, M.W., 1983, Studies of hibernating populations of the mosquito Culex pipiens L. in southern and northern England, J. Nat. Hist. 17:849–857.Google Scholar
  109. 109.
    Tate, P., and Vincent, M., 1936, The biology of autogenous and anautogenous races of Culex pipiens L. (Diptera: Culicidae), Parasitology 28:115–145.Google Scholar
  110. 110.
    Tesh, R.B., and Schroyer, D.A., 1980, The mechanism of arbovirus transmission in mosquitoes: San Angelo virus in Aedes albopictus, Am. J. Trop. Med. Hyg. 29:1394–1404.PubMedGoogle Scholar
  111. 111.
    Ura, M., 1976, Ecology of Japanese encephalitis virus in Okinawa, Japan. I. The investigation of pig and mosquito infection of the virus in Okinawa Island from 1966 to 1976. Trop. Med. (Nagasaki) 18:151–163. [Cited in 82.].Google Scholar
  112. 112.
    Vinogradova, E.B., 1960, An experimental investigation of the ecological factors inducing imaginal diapause in bloodsucking mosquitoes (Diptera: Culicidae), Entomol. Rev. 39:210–219.Google Scholar
  113. 113.
    Wallis, R.C., Taylor, R.M., McCollum, R.W., and Riordan, J.T., 1958. Study of hibernating mosquitoes in eastern equine encephalitis epidemic areas in Connecticut, Mosq. News 18:1–4.Google Scholar
  114. 114.
    Washino, R.K., 1977, The physiological ecology of gonotropic dissociation and related phenomena in mosquitoes, J. Med. Entomol. 13:381–388.PubMedGoogle Scholar
  115. 115.
    Watts, D.M., Pantuwatana, S., DeFoliart, G., Yuill, T. M., and Thompson, W.R., 1973, Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito Aedes triseriatus, Science 182:1140–11451.PubMedGoogle Scholar
  116. 116.
    Wesenberg-Lund, C., 1921, Contributions to the biology of the Danish Culicidae, K. Dan. Vidensk. Selsk. 7:1–210.Google Scholar
  117. 117.
    Wilson, T.G., 1982. A correlation between juvenile hormone deficiency and vitellogenic degeneration in Drosophila melanogaster, Roux’s Arch. Dev. Biol. 191:257–263.Google Scholar
  118. 118.
    Wilton, D.P., and Smith, G.C., 1985, Ovarian diapause in three geographic strains of Culex pipiens (Diptera: Culicidae), J. Med. Entomol. 22:524–528.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Bruce F. Eldridge

There are no affiliations available

Personalised recommendations