The Strange Fate of Pyrrolizidine Alkaloids

  • Dietrich Schneider
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Plants, as well as other organisms, are composed of chemical substances. In 1891, the pioneer of cytochemistry, A. Kossel, subdivided plant components into primary and secondary ones. Mothes (1980, 1984) quotes from an 1896 lecture of Kossel, who addressed the Berlin Physiological Society (in liberal translation from the German):

The search and description of those atomic complexes, which are the essence of life are the foundation for the investigation of the life processes. I propose to call the essential components of the cell PRIMARY and those that are not found in all the cells that have the capacity to develop, SECONDARY. The decision whether a substance is a primary or a secondary one is in some cases difficult.


Pyrrolizidine Alkaloid Male Moth Pheromone Production Monarch Butterfly Cyanogenic Glucoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackery PR, Vane-Wright RI (1984) Milkweed Butterflies. British Museum of Natural History, LondonGoogle Scholar
  2. Aplin RT, Rothschild M (1972) Poisonous alkaloids in the body tissues of the Garden Tiger moth [Arctia caja (L.)] and the Cinnabar moth [Tyria (= Callimorpha) jacobaeae (L.)] (Lepidoptera). In: de Vries A, Kochva E (eds) Toxins of Animal and Plant Origin 2. Gordon and Breach, London, pp 579–595Google Scholar
  3. Bell TW, Boppre M, Schneider D, Meinwald J (1984) Stereochemical course of pheromone biosynthesis in an arctiid moth (Creatonotos transiens). Experientia 40:713-714PubMedCrossRefGoogle Scholar
  4. Benn M, DeGrave J, Gnanasundersam C, Hutchins R (1979) Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval: their persistence through the life-cycle and transfer to a parasite. Experientia 35:731–732CrossRefGoogle Scholar
  5. Bentley MD, Leonard DE, Stoddard WF, Zalkow LH (1984) Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann Entomol Soc Am 77:393–397Google Scholar
  6. Bernays EA (1983) Nitrogen in defence against insects. In: Lee JA, McNeill S, Rorison IH (eds) Nitrogen as an Ecological Factor. Blackwell, Oxford, pp 321–344Google Scholar
  7. Bernays EA, Chapman RF (1977) Deterrent chemicals as a basis of oligophagy in Loeusta migratoria (L.). Ecol Entomol 2: 1–18CrossRefGoogle Scholar
  8. Bernays EA, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper, Zonoeerus variegatus. J Zool Lond 182:8587Google Scholar
  9. Boppré M (1978) Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol Exp Appl 24:264–277CrossRefGoogle Scholar
  10. Boppré M (1979) Lepidoptera and withered plants. Antenna 3:7–9Google Scholar
  11. Boppré M (1981) Adult Lepidoptera “feeding” at withered Heliotropium plants (Boraginaceae) in East Africa. Ecol Entomol 6:449–452CrossRefGoogle Scholar
  12. Boppré M (1983) Leaf-scratching-a specialized behaviour of danaine butterflies for gathering secondary plant substances. Oecologia 59:414–416CrossRefGoogle Scholar
  13. Boppré M (1984a) Chemically mediated interactions between butterflies. In: Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Academic Press, London, pp 259275Google Scholar
  14. Boppré M (1984b) Redefining “pharmacophagy.” J Chern Ecol 10: 1151–1154CrossRefGoogle Scholar
  15. Boppre M, Scherer G (1981) A new species of flea beetle (Alticinae) showing malebiased feeding at withered Heliotropium plants. Syst Entomol 6:347–354CrossRefGoogle Scholar
  16. Boppré M, Schneider D (1985a) On the biology of Creatonotos (Lep.: Arctiidae) with special reference to the androconial system. Zool J Linn Soc (in press)Google Scholar
  17. Boppre M, Schneider D (1985b) Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lepidoptera: Arctiidae). J Comp Physiol 157A:569–577CrossRefGoogle Scholar
  18. Boppré M, Petty RL, Schneider D, Meinwald J (1978) Behaviorally mediated contacts between scent organs: another prerequisite for pheromone production in Danaus ehrysippus males (Lepidoptera). J Comp Physiol 126:97–103CrossRefGoogle Scholar
  19. Boppré M, Seibt U, Wickler W (1984) Pharmacophagy in grasshoppers? Entomol Exp Appl 35: 115–117CrossRefGoogle Scholar
  20. Brower LP (1969) Ecological chemistry. Sci Am 220 (2):22–29PubMedCrossRefGoogle Scholar
  21. Brower LP (1984) Chemical defense in butterflies. In: Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Academic Press, London, pp 109–134Google Scholar
  22. Brower LP, Brower JVZ, Cranston FP (1965) Courtship behavior of the queen butterfly, Danaus gilippus berenice. Zoologica NY 50:1–39Google Scholar
  23. Brown KS Jr (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709CrossRefGoogle Scholar
  24. Bull LB, Culvenor CCJ, Dick AT (1968) The Pyrrolizidine Alkaloids. North-Holland Publishing Co., AmsterdamGoogle Scholar
  25. Clearwater JR (1975) Pheromone metabolism in male Pseudaletia separata (Walk) and Mamestra conjigurata (Walk), (Lepidoptera, Noctuidae). Comp Biochem Physiol B 50:77–82PubMedCrossRefGoogle Scholar
  26. Cock MJW (1984) Possibilities for biological control of Chromolaena odorata. Trop Pest Manage 30:7–13CrossRefGoogle Scholar
  27. Cock MJW., Holloway JD (1982) The history of., and prospects for., the biological control of Chromolaena odorata (Compositae) by Pareuchaetes pseudoinsulata Rego Barros and allies (Lepidoptera: Arctiidae). Bull Entomol Res 72: 193–205CrossRefGoogle Scholar
  28. Conner WE., Eisner T., Vander Meer RK., Guerrero A., Meinwald J (1981) Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9:227–235CrossRefGoogle Scholar
  29. Culvenor CCJ., Edgar JA (1972) Dihydropyrrolizine secretions associated with coremata of Utetheisa moths (family Arctiidae). Experientia 28:627–628CrossRefGoogle Scholar
  30. Dempster JP (1982) The ecology of the cinnabar moth., Tyria jacohaeae L. (Lepidoptera: Arctiidae). Adv Ecol Res 12: 1–36CrossRefGoogle Scholar
  31. Edgar JA (1984) Parsonsieae: ancestral larvae foodplants of the Danainae and Ithomiinae. In: Vane-Wright RI., Ackery PR (eds) The Biology of Butterflies. Academic Press., London., pp 91–93Google Scholar
  32. Edgar JA, Culvenor CCJ., Smith LW (1971) Dihydropyrrolizine derivatives in the “hairpencil” secretions of danaid butterflies. Experientia 27:761–762CrossRefGoogle Scholar
  33. Edgar JA., Culvenor CCJ., Robinson GS (1973) Hairpencil dihydropyrrolizines of Danainae from the New Hebrides. J Aust Entomol Soc 12: 144–150CrossRefGoogle Scholar
  34. Edgar JA., Culvenor CCJ., Pliske TE (1974) Co-evolution of danaid butterflies and their hostplants. Nature 250:646–648PubMedCrossRefGoogle Scholar
  35. Edgar JA., Culvenor CCJ., Pliske TE (1976) Pyrrolizidine alkaloid-derived pheromone on the costal fringes of male Ithomiinae. J Chern Ecol 2:263–270CrossRefGoogle Scholar
  36. Edgar JA., Boppre M., Schneider D (1979) Pyrrolizidine alkaloid storage in African and Australian danaid butterflies. Experientia 35: 1447–1448CrossRefGoogle Scholar
  37. Ehrlich PR., Raven PH (1967) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  38. Eisner T (1982) For love of nature: explorations and discovery at biological field stations. Bioscience 32:321–326CrossRefGoogle Scholar
  39. Fraenkel G (1959) The raison d’être of secondary plant substances. Science 129: 1466–1470PubMedCrossRefGoogle Scholar
  40. Goss GJ (1979) The interaction between moths and plants containing pyrrolizidine alkaloids. Environ Entomol 8:487–493Google Scholar
  41. Haber WA (1978) Evolutionary ecology of tropical mimetic butterflies. Ph.D. Thesis University of MinnesotaGoogle Scholar
  42. Huxtable RJ (1980) Herbal teas and toxins: novel aspects of pyrrolizidine poisoning in the United States. Perspect Bioi Med 24: 1–14 Fate of Pyrrolizidine AlkaloidsGoogle Scholar
  43. Jermy T (1984) Evolution of insect/host plant relationships. Am Natur 124:609–630CrossRefGoogle Scholar
  44. Lüthy J, Heim T, Schlatter C (1983) Transfer of (3H)pyrrolizidine alkaloids from Senecio vulgaris L. and metabolites into rat milk and tissues. Toxicol Lett 17:283–288PubMedCrossRefGoogle Scholar
  45. Meinwald J, Meinwald YC (1966) Structure and synthesis of the major component in the hairpencil secretion of a male butterfly, Lycorea ceres ceres (Cramer). J Am Chern Soc 88: 1305–1310CrossRefGoogle Scholar
  46. Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly (Lycorea). Science 151:583–585PubMedCrossRefGoogle Scholar
  47. Meinwald J, Meinwald YC, Mazzocchi PH (1969) Sex pheromone of the queen butterfly. Science 164: 1174–1175PubMedCrossRefGoogle Scholar
  48. Mothes K (1980) Historical introduction. In: Bell EA, Charlwood BV (eds) Encyclopedia of Plant Physiology. New Ser, 8. Secondary plant products. Springer-Verlag, Berlin, pp 1–10Google Scholar
  49. Mothes K (1984) Zur Wissenschaftsgeschichte der biogenen Arzneistoffe. In: Czygan FC (ed) Biogene Arzneistoffe. Vieweg, Braunschweig-Wiesbaden, pp 5–25Google Scholar
  50. Myers JH (1978) Biological control introductions as grandiose field experiments: adaptations of the cinnabar moth to new surroundings. 4th Int Symp Bioi Contr Weeds, 181–188Google Scholar
  51. Nahrstedt A, Davis RH (1983) Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp Biochem Physiol B 75:65–73CrossRefGoogle Scholar
  52. Pagden HT (1957) The presence of coremata in Creatonotos gangis (L.) (Lepidoptera: Arctiidae). Proc R Entomol Soc Lond A 32:90–94Google Scholar
  53. Pliske TE (1975) Attraction of Lepidoptera to plants containing pyrrolizidine alkaloids. Environ Entomol 4:455–473Google Scholar
  54. Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164: 1170–1172PubMedCrossRefGoogle Scholar
  55. Pliske TE, Edgar JA, Culvenor CCJ (1976) The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids. J Chern Ecol 2: 155–162Google Scholar
  56. Röder E (1984) Wie verbreitet und wie gefährlich sind Pyrrolizidin Alkaloide? Pharm Unserer Zeit 13 (2):33–38PubMedCrossRefGoogle Scholar
  57. Roitman IN (1983) Ingestion of pyrrolizidine alkaloids: a health hazard of global proportions. In: Finley JW, Schwass DE (eds) Xenobiotics in Foods and Feeds. Am Chern Soc, Washington DC, pp 345–378Google Scholar
  58. Rothschild M (1972a) Secondary plant substances and warning coloration in insects. In: van Emden HF (ed) Insect/Plant Relationships. Blackwell, Oxford, pp 59–83Google Scholar
  59. Rothschild M (1972b) Some observations on the relationship between plants, toxic insects and birds. In Harborne JB (ed) Phytochemical Ecology. Academic Press, London, pp 1–12Google Scholar
  60. Rothschild M, Aplin RT (1971) Toxins in tiger moths (Arctiidae: Lepidoptera). In Tahori AS (ed) Pesticide Chemistry 3. Chemical Releasers in Insects. Gordon and Breach, London, pp 177–182Google Scholar
  61. Schneider D (1983) Kommunikation durch chemische Signale bei Inskten: alte und neue Beispiele von Lepidopteren. Verh Dtsch Zool Ges 1983:5–16Google Scholar
  62. Schneider D (1984) Pheromone biology in the Lepidoptera: overview, some recent findings and some generalizations. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge University Press, pp 301–313Google Scholar
  63. Schneider D, Boppré M (1981) Pyrrolizidin-Alkaloide als Vorstufen für die Duftstoff-Biosynthese und als Regulatoren der Duftorgan-Morphogenese bei Creatonotos (Lepidoptera: Arctiidae). Verh Dtsch Zool Ges 1981:169Google Scholar
  64. Schneider D, Seibt U (1969) Sex pheromone of the queen butterfly: electroantennogram responses. Science 164: 1173–1174PubMedCrossRefGoogle Scholar
  65. Schneider D, Boppre M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) A pheromone precursor and its uptake in male Danaus butterflies. J Comp Physiol 97:245–256CrossRefGoogle Scholar
  66. Schneider D, Boppre M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development in Creatonotos moths: regulation by pyrrolizidine alkaloids. Science 215: 1264–1265PubMedCrossRefGoogle Scholar
  67. Schuler W, Hesse E (1985) On the function of warning coloration: a black and yellow pattern inhibits prey-attack by naive domestic chicks. Behav Ecol Sociobiol 16:249–255CrossRefGoogle Scholar
  68. Skaife SH, Ledger JI, Bannister A (1979) African Insect Life. C Stuik Publ, Cape Town Swain T (1976) Secondary compounds: primary products. Nova Acta Leopold Suppl 7:411–421Google Scholar
  69. Teuscher E (1984) Zur moglichen Funktion von Sekundarstoffen in biologischen Systemen In: Czygan FC (ed) Biogene Arzneistoffe. Vieweg, Braunschweig-Wiesbaden, pp 61–83Google Scholar
  70. Varley CG (1962) A plea for a new look at Lepidoptera with special reference to the scent distributing organs of male moths. Trans Soc Br Entomol 15:29–40Google Scholar
  71. Windecker W (1939) Euchelia jacobaea und das Schutztrachtenproblem. Z Morphol Oekol Tiere 35:84–139CrossRefGoogle Scholar
  72. Wray V, Davis RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Z Naturforsch 38 C:583–588Google Scholar
  73. Wunderer H, Hansen K, Bell TW, Schneider D, Meinwald J, (1986) Male and female pheromones in the behaviour of two Asian moths, Creatonotos (Lepidoptera: Arctiidae). Exp Bioi 46 (in press)Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Dietrich Schneider
    • 1
  1. 1.Max Planck Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations