Regression Models and Life-Tables

  • David R. Cox
Part of the Springer Series in Statistics book series (SSS)


The analysis of censored failure times is considered. It is assumed that on each individual arc available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.


Hazard Function Survivor Function Failure Time Conditional Likelihood Uncensored Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breslow. N. (1970). A generalized Kruskal-Wallis test for comparing samples subjcct to unequal patterns of censoring. Biometrika, 57, 579–594.zbMATHCrossRefGoogle Scholar
  2. Chernoff, H. (1962). Optimal accelerated life designs for estimation. Technometrics, 4. 381–408.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Chiang, C.L. (1968). Introduction to Stochastic Processes in Biostatistics. New York: Wiley.zbMATHGoogle Scholar
  4. Cochran, W.G. (1954). Some methods for strengthening the common X2 tests. Biometrics. 10, 417–451.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Cox, D.R. (1959) The analysis of exponentially distributed life-times with two types of failure J. R. Statist. Soc. B. 21, 411–421.zbMATHGoogle Scholar
  6. Cox, D.R. (1964). Some applications of exponential ordered scores. J. R. Statist. Soc. B, 26. 103–110.zbMATHGoogle Scholar
  7. Cox, D.R. (1972). The statistical analysis of dependencies in point processes. In Symposium on Point Processes ( P.A.W. Lewis, ed.). New York: Wiley.Google Scholar
  8. Cox, D.R.. and Lewis. P.A.W. (1972). Multivariate point processes. Proc. 6th Berkeley Symp.Google Scholar
  9. Efron. B. (1967). The two sample problem with censored data. Proc. 5th Berkeley Symp., 4. 831–853.Google Scholar
  10. Gehan. E.A. (1965). A generalized Wilcoxon test for comparing arbitrarily single- censored samples. Biometrika, 52, 203–224.MathSciNetzbMATHGoogle Scholar
  11. Grenander, U. (1956). On the theory of mortality measurement, I and II. Skand Akt., 39. 90–96. 125–153.Google Scholar
  12. Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc.. 53. 457–481.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Lehmann, E.L. (1953). The power of rank tests. Ann. Math. Statist.. 24. 23–43.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Mantel, N. (1963). Chi-square tests with one degree of freedom: extensions of the Mantel-Haenzel procedure. J. Am. Statist. Assoc.. 58, 690–700.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50, 163–170.Google Scholar
  16. Mantel. N., and Haenzel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst., 22, 719–748.Google Scholar
  17. Peto, R., and Peto, J. (1972). Asymptotically efficient rank invariant test procedures. J. R. Statist. Soc., A 135, 185–206.CrossRefGoogle Scholar
  18. Pratt, J.W. (1962). Contribution to discussion of paper by A. Birnbaum. J. Am. Statist. Assoc.. 57. 314–316.Google Scholar
  19. Sampford, M.R. (1952). The estimation of response-time distributions. II: Multi- stimulus distributions. Biometrics, 8. 307–369.MathSciNetCrossRefGoogle Scholar
  20. Sampford M.R. (1954). The estimation of response-time distribution. Ill: Truncation and survival. Biometrics, 10. 531–561.zbMATHCrossRefGoogle Scholar
  21. Sampford, M.R. (1959). Censored obsevations in randomized block experiments, J.R. Statist. Soc. B, 21, 214–237.MathSciNetzbMATHGoogle Scholar
  22. Savage. I.R. (1956). Contributions to the theory of rank order statistics—the two- sample ease. Ann. Math. Statists 27. 590–615.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Shooman. M.L. (1968). Reliability physics models. I.E.E.E. Trans, on Reliability, 17, 14–20.CrossRefGoogle Scholar
  24. Watson. G.S., and Leadbelter, M.R, (1964a). Hazard analysis. I. Biometrika, 51, 175– 184.MathSciNetzbMATHGoogle Scholar
  25. Watson. G.S.. and Leadbelter. M R. (1964b). Hazard analysis, II. Sankhyā, A 26, 101–116.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • David R. Cox
    • 1
  1. 1.Imperial CollegeLondonUK

Personalised recommendations