Advertisement

Three-Dimensional Air Combat: Numerical Solution of Complex Differential Games

  • R. Lachner
  • M. H. Breitner
  • H. J. Pesch
Conference paper
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 3)

Abstract

Complex pursuit-evasion games with complete information under state variable inequality constraints are investigated. By exploitation of Isaacs’ minimax principle, necessary conditions of first and second order are derived for the optimal trajectories. These conditions give rise to multipoint boundary-value problems, which yield open-loop representations of the optimal strategies along the optimal trajectories. The multipoint boundary-value problems are accurately solved by the multiple shooting method. The computed open-loop representations can thereafter be used to synthesize the optimal strategies globally.

As an illustrative example, the evasion of an aircraft from a pursuing missile is investigated. The flight of the aircraft is restricted by various control variable inequality contraints and by a state variable inequality constraint for the dynamic pressure. The optimal trajectories exhibit boundary arcs with regular and singular constrained controls. The influence of various singular surfaces in the state space including a low-dimensional universal surface is discussed.

Keywords

Differential games pursuit-evasion games singular surfaces multipoint boundary-value problems multiple shooting method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Başar, T., and Olsder, G. J., Dynamic Noncooperative Game Theory, Academic Press, London, 1982, 2nd ed., 1994.Google Scholar
  2. [2]
    Breitner, M. H., Construction of the Optimal Feedback Controller for Constrained Optimal Control Problems with Unknown Disturbances, in: R. Bulirsch and D. Kraft (Eds.), Computational Optimal Control, International Series of Numerical Mathematics 115, Birkhauser, Basel, 1994, 147–162.Google Scholar
  3. [3]
    Breitner, M. H., Real-Time Capable Approximation of Optimal Strategies in Complex Differential Games, in: M. Breton, G. Zaccour (Eds.), Proceedings of the Sixth International Symposium on Dynamic Games and Applications, St-Jovite, Quebec, GERAD, Ecole des Hautes Etudes Commerciales, Montreal, 1994 370–374.Google Scholar
  4. [4]
    Breitner, M. H., Robust-optimale Riickkopplungssteuerungen gegen unvorhersehbare Einfliisse: Differentialspielansatz, numerische Berech- nung und Echtzeitapproximation, PhD thesis, in preparation.Google Scholar
  5. [5]
    Breitner, M. H., and Pesch H. J., Reentry Trajectory Optimization under Atmospheric Uncertainty as a Differential Game, in: T. Başar, and A. Haurie (Eds.), Advances in Dynamic Games and Applications, Annals of the International Society of Dynamic Games 1, 1994, Birkhauser, Basel, 70–88.Google Scholar
  6. [6]
    Breitner, M. H., Grimm, W., and Pesch, H. J., Barrier Trajectories of a Realistic Missile/Target Pursuit-Evasion Game, in: R. P. Hamalainen, and H. K. Ehtamo (Eds.), Differential Games — Developments in Modelling and Computation, Lecture Notes in Control and Information Sciences 156,1991, Springer, Berlin, 48–57.Google Scholar
  7. [7]
    Breitner, M. H., Pesch, H. J., and Grimm, W., Complex Differential Games of Pursuit-Evasion Type with State Constraints, Part 1: Necessary Conditions for Optimal Open-Loop Strategies, Part 2: Numerical Computation of Optimal Open-Loop Strategies, Journal of Optimization Theory and Applications 78, 1993, 419–441, 443–463.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Bryson, A. E., Denham, W. F., and Dreyfus, S. E., Optimal Programming Problems with Inequality Constraints, I: Necessary Conditions for Extremal Solutions, AIAA Journal 1, 1963, 2544–2550.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    bulirsch, r., Die Mehrzielmethode zur numerischen Losung von Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz-Gesellschaft, DLR, Oberpfaffenhofen, Germany, 1971; Reprint, Department of Mathematics, Munich University of Technology, Munich, 1985 and 1993.Google Scholar
  10. [10]
    Fink, G., Numerische Berechnung optimaler Strategien fur ein realitatsnahes Differentialspiel einer Verfolgung im dreidimensionalen Raum, Diploma thesis, Department of Mathematics, Munich University of Technology, Munich, 1994.Google Scholar
  11. [11]
    Greenwood, N. J. C., Applied Differential Games in the Aerial Scenario, PhD thesis, Department of Mathematics, University of Queensland, Brisbane, 1994.Google Scholar
  12. [12]
    Grimm, W., Lenkung von Hochleistungsflugzeugen. Vergleich von optimaler Steuerung und fastoptimaler Echtzeitsteuerung, PhD thesis, Department of Mathematics, Munich University of Technology, Munich, 1992.Google Scholar
  13. [13]
    Guelman, M., Shinar, J., and Green, J., Qualitative Study of a Planar Pursuit Evasion Game in the Atmosphere, in: Proceedings of the AIAA Guidance, Navigation and Control Conference, Minneapolis, 1988.Google Scholar
  14. [14]
    Gutman, S., and Katz, D., On Guaranteed-Cost, Closed-Form Guidance via Simple Linear Differential Games, in: Proceedings of the 27th IEEE Conference on Decision and Control, Austin, 1988.Google Scholar
  15. [15]
    Hiltmann, P., Chudej, K., and Breitner, M. H., Eine modifizierte Mehrzielmethode zur Losung von Mehrpunkt-Randwertproblemen — Benutzeranleitung, Report No. 14, Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 255 “Transatmospharische Flugsysteme”, Department of Mathematics, Munich University of Technology, Munich, Germany, 1993.Google Scholar
  16. [16]
    Isaacs, R., Games of Pursuit, Paper No. P-257, RAND Corporation, Santa Monica, California, 1951.Google Scholar
  17. [17]
    Isaacs, R., Differential Games, Wiley, New York, New York, 1965; Krieger, New York, New York, 1975.Google Scholar
  18. [18]
    Jacobson, D. H., Lele, M. M., and Speyer, J. L., New Necessary Conditions of Optimality for Control Problems with State Variable Inequality Constraints, Journal of Mathematical Analysis and Applications 35, 255–284, 1971.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Lachner, R., Realitatsnahe Modellierung eines Differentialspieles mit Zustandsbeschrankungen und numerische Berechnung optimaler Trajek- torien, Diploma thesis, Department of Mathematics, Munich University of Technology, Munich, Germany, 1992.Google Scholar
  20. [20]
    Lachner, R., Breitner, M. H., and Pesch, H. J., Optimal Strategies of a Complex Pursuit-Evasion Game, in: R. Fritsch, and M. Toepell (Eds.), Proceedings of the 2nd Gauss Symposium, Munich, Germany, 1993; to appear in Journal of Computing and Information, 1995.Google Scholar
  21. [21]
    Lachner, R., Breitner, M. H., and Pesch, H. J., Efficient Numerical Solution of Differential Games with Application to Air Combat, Report No. 466, Deutsche Forschungsgemeinschaft, Schwerpunkt “Anwendungsbezogene Optimierung und Steuerung”, Department of Mathematics, Munich University of Technology, Munich, 1993.Google Scholar
  22. [22]
    Leitmann, G., Einfilhrung in die Theorie optimaler Steuerung und der Differentialspiele, R. Oldenburg, Munich, 1974.Google Scholar
  23. [23]
    Maurer, H., Optimale Steuerprozesse mit Zustandsbeschrankungen, Habilitationsschrift, University of Wurzburg, Wurzburg, 1976.Google Scholar
  24. [24]
    Miele, A., Flight Mechanics I, Theory of Flight Paths, Addison Wesley, Reading, 1962.Google Scholar
  25. [25]
    Pesch, H. J., Offline and Online Computation of Optimal Trajectories in the Aerospace Field, in: A. Miele and A. Salvetti (Eds.), Applied Mathematics in Aerospace Science and Engineering, Plenum, New York, 1994, 165–219.Google Scholar
  26. [26]
    Pesch, H. J., Solving Optimal Control and Pursuit-Evasion Game Problems of High Complexity, in: R. Bulirsch, and D. Kraft (Eds.), Computational Optimal Control, International Series of Numerical Mathematics 115, Birkhauser, Basel, 1994, 43–64.CrossRefGoogle Scholar
  27. [27]
    Pesch, H. J., Gabler, I., Miesbach, S., and Breitner, M. H., Synthesis of Optimal Strategies for Differential Games by Neural Networks, in: G. J. Olsder (Ed.), Advances in Dynamic Games and Applications, Annals of the International Society of Dynamic Games, this volume, Birkhauser, Boston, 1995.Google Scholar
  28. [28]
    Seywald, H., Cliff, E. M., and Well, K. H., Range Optimal Trajectories for an Aircraft Flying in the Vertical Plane, Journal of Guidance, Control, and Dynamics 17, 1994, 389–398.CrossRefGoogle Scholar
  29. [29]
    Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, Springer, New York, 2nd ed., 1993.zbMATHGoogle Scholar
  30. [30]
    von Stryk, O., Numerische Losung optimaler Steuerungsprob- leme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen, Fortschritt-Berichte VDI, Reihe 8, Nr. 441, VDI- Verlag, Diisseldorf, 1995Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • R. Lachner
    • 1
  • M. H. Breitner
    • 1
  • H. J. Pesch
    • 1
  1. 1.Institute of MathematicsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations