[1]
H.W.
Benjamin,
M.M.
Matzuk,
M.A.
Krasnow,
and
N.R.
Cozzarelli,
Recombination site selection by Tn3 resolvase: topological tests of a tracking mechanism, Cell
40 (1985), 147–158.
CrossRef [2]
K.
Brakke, Surface Evolver Manual (v. 1.92), Minnesota Geometry Center, Research Report GCG55, July 1993.
[3]
S.
Bryson,
M.H.
Freedman,
Z.X.
He,
and
Z.
Wang,
Mobius invariance of knot energy, Bull. Amer. Math. Soc.
28 (1993), 99–103.
CrossRef [4]
G.
Buck
and
J.
Simon,
Knots as dynamical systems, Topology Appl.
51 (1993), 229–246.
CrossRef [5]
G.
Buck
and
J.
Orloff, A simple energy function for knots, preprint 12/92 (to appear, Topology Appl.).
[6]
G.
Buck,
Random knots and energy: Elementary considerations, Journal of Knot Theory and its Ramifications
3 (1994), 355–364.
CrossRef [7]
G.
Buck, The projection energy bounds crossing number, preprint 10/93.
[8]
G.
Buck
and
J.
Orloff, Computing canonical conformations for knots, Topology Appl. 51 (1993), 246–253.
[9]
N.
Cozarelli, pers. comm. 7/94.
[10]
F.B.
Dean, A.
Stasiak, T.
Koller, and
N.R.
Cozzarelli, Duplex DNA knots produced by escherichia coli topoisomerasel, Journal of Biological Chemistry 260 (1985), 4975–4983.
[11]
T.
Deguchi
and
K.
Tsurusaki,
A statistical study of random knotting using the Vassiliev invariants, Journal of Knot Theory and its Ramifications
3 (1994), 321–353.
CrossRef [12]
P.
Dröge
and
N.R.
Cozzarelli,
Topological structure of DNA knots and catenanes, Methods in Enzymology
212 (1992), 120–130.
CrossRef [13]
P.
Dröge
and
N.R.
Cozzarelli,
Recombination of knotted substrates by Tn3 resolvase, Proc. Natl. Acad. Sci. USA
86 (1989), 6062–6066.
CrossRef [14]
C.
Ernst
and
D.W.
Sumners,
The growth of the number of prime knots, Math. Proc. Camb. Phil. Soc.
102 (1987), 303–315.
CrossRef [15]
M.
Freedman
and
Z.-X.
He,
Divergence free fields: Energy and asymptotic crossing number, Ann. Math.
133 (1991), 189–229.
CrossRef [16]
M.
Freedman, X.
He, [and
Z.
Wang], On the “energy” of knots and unknots, preprint 12/91 [12/92].
[17]
S.
Fukuhara, Energy of a knot, Fete of Topology (Matsumoto et al., Eds.), Academic Press, New York, 1988, 443–451.
[18]
R.
Kanaar,
A.
Klippel,
E.
Shekhtman,
J.M.
Dungan,
R.
Kahmann,
and
N.R. Cozzarelli,
Processive recombination by the phage Mu Gin system: Implications fo rthe mechanisms of DNA strand exchange, DNA site alignment, and enhancer action, Cell
62 (1990), 353–366.
CrossRef [19]
D.
Kim
and
R.
Kusner, Torus knots extremizing the Möbius energy, Experimental Math. 2 (1993), 1–9.
[20]
R.
Kusner
and
J.
Sullivan, Möbius energies for knots and links, surfaces and submanifolds, preprint 4/94.
[21]
H.A.
Lim
and
E.J.
Janse
van
Rensburg, A numerical simulation of electrophoresis of knotted DNA, Supercomputer Computations Research Institute (Florida State Univ.), report #FSU-SCRI-91–163, to appear J. Modelling Sci. Corn-put., Oxford.
[22]
H.A.
Lim, M.T.
Carroll, and
E.J.
van
Rensburg, Electrophoresis of knotted DNA in a regular and random electrophoretic medium, Biomedical Modeling and Simulation (J. Eisenfeld et al., Eds.), Elsevier Science Pub., New York, 1992, 213–223.
[23]
S.
Lomonaco, The modern legacies of Thompson’s atomic vortex theory in classical electrodynamics, Amer. Math. Soc. Proc. in Appl. Math., to appear; also pers. comm., preprint 1994, and talks at several meetings.
[24]
J.P.J.
Michels and
F.W.
Wiegel,
On the topology of a polymer ring, Proc. Roy. Soc. A
403 (1986), 269–284.
CrossRef [25]
J.P.J.
Michels
and
F.W.
Wiegel, Phys. Let.
90A (1982), 381–384.
CrossRef [26]
K.
Millett,
Knotting of regular polygons in 3-space, Journal of Knot Theory and its Ramifications,
3 (1994), 263–278.
CrossRef [27]
J.
Milnor,
On the total curvature of knots, Ann. Math.
52 (1950), 248–257.
CrossRef [28]
K.
Moffatt,
The energy spectrum of knots and links, Nature
347 (Sept. 1990), 367–369.
CrossRef [29]
J.
O’hara,
Energy of a knot, Topology
30 (1991), 241–247.
CrossRef [30]
J.
O’hara,
Family of energy functionals of knots, Topology Appl.
48 (1992), 147–161.
CrossRef [31]
J.
O’hara, Energy functionals of knots, Topology-Hawaii (K.H. Doverman, Ed.), (Proc. of 1991 conference), World Scientific, Singapore, 1992, 201–214.
[32]
J.
O’hara,
Energy functionals of knots II, Topology Appl.
56 (1994), 45–61.
CrossRef [33]
N.
Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.
[34]
R.
Randell,
An elementary invariant of knots, Journal of Knot Theory and its Ramifications,
3 (1994), 279–286.
CrossRef [35]
E.J.
Janse
van
Rensburg
and
S.G.
Whittington,
The knot probability in lattice polygons, J. Phys. A: Math. Gen.
23 (1990), 3573–3590.
CrossRef [36]
E.J.
Janse
van
Rensburg
and
S.G.
Whittington,
The dimensions of knotted polygons, J. Phys. A: Math. Gen
24 (1991), 3935–3948.
CrossRef [37]
E.J.J.
van
Rensburg
and
S.D.
Promislaw, Minimal knots in the cubic lattice, preprint 12/93.
[38]
At the July 1994 IMA conference, after the talk which included the data and computationally estimated slope of 1.647, several colleagues (including E.J.J. Van Rensburg, A. Stasiak, and J. Sullivan) suggested that the limiting slope was, in fact, (math), and this has been verified.
[39]
V.Y.
Rybekov,
N.R.
Cozzarelli,
and
A.V.
Vologodskii,
Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Natl. Acad. Sci. USA 90 (1993), 5307–5311.
CrossRef [40]
S.Y.
Shaw
and
J.C.
Wang, Science
260 (1993), 533.
CrossRef [41]
S.Y.
Shaw
and
J.C.
Wang,
DNA knot formation is aqueous solutions, Journal of Knot Theory and its Ramifications,
3 (1994), 287–298.
CrossRef [42]
S.
Spengler,
A.
Stasiak,
and
N.R.
Cozzarelli,
The stereostructure of knots and catenanes produced by phage λ integrative recombination: implications for mechanism and DNA structure, Cell
42 (1985), 325–334.
CrossRef [43]
J.K.
Simon,
Energy functions for polygonal knots, Journal of Knot Theory and its Ramifications,
3 (1994), 299–320.
CrossRef [44]
In a conversation during the July 1994 IMA conference, Andrzej Stasiak suggested the appealing term in virtuo to describe computer experiments.
[45]
De
Witt
Sumners
and
S.G.
Whittington,
Knots in self-avoiding walks, J. Phys. A: Math. Gen.
21 (1988), 1689–1694.
CrossRef [46]
M.C.
Tesi,
E.J.
Janse
van
Rensburg,
E.
Orlandini,
and
S.G.
Whittington,
Knot probability for lattice polygons in confined geometries, J. Phys. A: Math. Gen.
27 (1994), 347–360.
CrossRef [47]
M.C.
Tesi,
E.J.
Janse
van
Rensburg,
E.
Orlandini,
D.W.
Sumners,
and
S.G.
Whittington,
Knotting and supercoiling in circular DNA: A model incorporating the effect of added sait, Phys. Rev. E:
49 (1994), 868–872.
CrossRef [48]
A.V.
Vologodski, A.V.
Lukashin, M.D.
Frank-Kaminetskii, and
A.V.
Ahshelevich, The knot probability in statistical mechanics of polymer chains, Sov. Phys. JETP 39 (1974), 1059–1063.
[49]
S.
Wasserman
and
N.R.
Cozzarelli, Supercoiled DNA-directed knotting by T4 topoisomerase, Journal of Biological Chemistry 266 (1991), 20567–20573.
[50]
S.
Whittington, Topology of polymers, in New Scientific Applications of Geometry and Topology (D.W. Sumners, Ed.), Amer. Math. Soc. PSAM 45 (1992), 73–95.