Advertisement

Antibody Detection

  • Kenneth L. Herrmann
Chapter

Abstract

Subject: Serodiagnosis (use of known antigens as reagents to detect antibodies in patient sera for diagnosing recent or past viral infection).

Serodiagnostic Principles: Mechanism of antibody production, response patterns to pri-mary and recurrent infections, and significance of antibody to immunity in viral diseases.

Laboratory Methods: Neutralization, complement fixation, hemagglutination inhibition, immune adherence hemagglutination, passive agglutination, hemolysis in gel, radioimmunoassay, enzyme immunoassay, indirect immunofluorescence/fluoroimmunoassay, and Western immunoblotting.

Interpretation of Test Results: Significance of presence of antibody or change in antibody level. Value of immunoglobulin type-specific assays in viral serodiagnosis.

Problems and Pitfalls: Insensitive and nonspecific serodiagnostic tests resulting from heterologous cross-reactions, immunologic interference, substandard reagents, or improper test performance.

Keywords

Hemagglutination Inhibition Complement Fixation Test Phate Buffer Saline Antigen Titration Antiviral Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Alexander, S., and J. H. Elder. 1984. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science 226: 1328 – 1330.PubMedCrossRefGoogle Scholar
  2. Al-Nakib, W. 1980. A modified passive-haemagglutination technique for the detection of cytomegalovirus and herpes simplex virus antibodies: application in virus-specific IgM diagnosis. J. Med. Virol. 5: 287 – 293.PubMedCrossRefGoogle Scholar
  3. Al-Nakib, W., J. M. Best, and J. E. Banatvala. 1975. Rubella-specific serum and nasopharyngeal immunologic responses following naturally acquired and vaccine-in- duced infection—prolonged persistence of virus-spe- cific IgM. Lancet 1: 182 – 185.PubMedCrossRefGoogle Scholar
  4. Ankerst, J., P. Christensen, L. Kjellen, and G. Kronvall. 1974. A routine diagnostic test for IgA and IgM antibodies to rubella virus: absorption of IgG with Staphylococcus aureus. J. Infect. Dis. 130: 268 – 273.PubMedCrossRefGoogle Scholar
  5. Avrameas, S. 1969. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for detection of antigens and antibodies. Immunochemistry 6: 43 – 52.PubMedCrossRefGoogle Scholar
  6. Banatvala, J. E., J. M. Best, E. A. Kennedy, E. E. Smith, and M. E. Spence. 1967. A serological method for demonstrating recent infection by rubella virus. Br. Med. J. 3: 285 – 286.PubMedCrossRefGoogle Scholar
  7. Barros, M. F., and P. Lebon. 1975. Separation des anti- corps IgM anti-rebeole par chromatographic d’affinite. Biomed. Express (Paris) 23: 184 – 188.Google Scholar
  8. Bers, G., and D. Garfin. 1985. Protein and nucleic acid blotting and immunobiochemical detection. Bio. Tech. 3: 276 – 288.Google Scholar
  9. Baublis, J. V., and G. C. Brown. 1968. Specific responses of the immunoglobulins to rubella infection. Proc. Soc. Exp. Biol. Med. 128: 206 – 210.PubMedGoogle Scholar
  10. Bullock, S. L., and K. W. Walls. 1977. Evaluation of some of the parameters of the ELISA. J. Infect. Dis. (suppl.) 136: S279 – S279.Google Scholar
  11. Caul, E. O., S. J. Hobbs, P. C. Roberts, and S. K. R. Clarke. 1976. Evaluation of simplified sucrose gradient method for the detection of rubella-specific IgM in routine diagnostic practice. J. Med. Virol. 2: 153 – 163.CrossRefGoogle Scholar
  12. Caul, E. O., G. W. Smyth, and S. K. R. Clarke. 1974. A simplified method for the detection of rubella-specific IgM employing sucrose density fractionation and 2-mer- captoethanol. J. Hyg. 73: 329 – 340.CrossRefGoogle Scholar
  13. Chau, K. H., M. P. Hargie, R. H. Decker, I. K. Mushahwar, and L. R. Overby. 1983. Serodiagnosis of recent hepatitis B infection by IgM class anti-HBc. He- patology 3: 142 – 149.Google Scholar
  14. Duermeyer, W., and J. Van der Veen. 1978. Specific detection of IgM antibodies by ELISA, applied in hepatitis A. Lancet 2: 684 – 685.PubMedCrossRefGoogle Scholar
  15. Finney, D. J. 1971. Probit analysis, 3rd ed., p. 20–49. Cambridge University Press, Cambridge.Google Scholar
  16. Forghani, B., N. J. Schmidt, and E. H. Lennette. 1973. Demonstration of rubella IgM antibody by indirect fluorescent antibody staining, sucrose density gradient centrifugation and mercaptoethanol reduction. Interviro- logy 1: 48 – 59.CrossRefGoogle Scholar
  17. Goldwasser, R. A., and C. D. Shepard. 1958. Staining of complement and modifications of fluorescent antibody procedures. J. Immunol. 80: 122 – 131.PubMedGoogle Scholar
  18. Hall, E. C., and M. B. Felker. 1970. Reproducibility in the serological laboratory. Health Lab. Sci. 7: 63 – 68.Google Scholar
  19. Hawkes, R. A. 1979. General principles underlying laboratory diagnosis of viral infections, p. 3-48. InE. H. Lennette and N. J. Schmidt (ed.), Diagnostic procedures for viral, rickettsial and chlamydial infections. American Public Health Association, Washington, D.C.Google Scholar
  20. Hawkes, R. A., C. R. Boughton, V. Ferguson, and N. I. Lehmann. 1980. Use of immunoglobulin M antibody to hepatitis B core antigen in diagnosis of viral hepatitis. J. Clin. Microbiol. 11: 581 – 583.PubMedGoogle Scholar
  21. Herrmann, K. L. 1986. IgM determinations, p. 219–228. InS. Specter and G. J. Lancz (ed.), Clinical virology manual. Elsevier Science Publishing Co., New York.Google Scholar
  22. Hierholzer, J. C., and M. T. Suggs. 1969. Standardized viral hemagglutination and hemagglutination-inhibition tests. I. Standardization of erythrocyte suspensions. Appl. Microbiol. 18: 816 – 823.Google Scholar
  23. Hierholzer, J. C., and M. T. Suggs, and E. C. Hall. 1969. Standardized viral hemagglutination and hemagglutination-inhibition tests. II. Description and statistical evaluation. Appl. Microbiol. 18: 824 – 833.Google Scholar
  24. Johnson, D. A., J. W. Gautsch, J. R. Sportsman, and J. H. Elder. 1984. Improved technique utilizing non-fat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1: 3 – 8.Google Scholar
  25. Johnson, R. B., Jr., and R. Libby. 1980. Separation of immunoglobulin (IgM) essentially free of IgG from serum for use in systems requiring assay of IgM-type antibodies without interference from rheumatoid factor. J. Clin. Microbiol. 12: 451 – 454.PubMedGoogle Scholar
  26. Karber, G. 1931. Beitrag zur kollektiven behandlung phar- makologischer reihenversuche. Arch. Exp. Pathol. Pharmakol. 162: 480 – 483.CrossRefGoogle Scholar
  27. Kenny, G. E., and C. L. Dunsmoor. 1983. Principles, problems, and strategies in the use of antigenic mixtures for enzyme-linked immunosorbent assay. J. Clin. Microbiol. 17: 655 – 665.PubMedGoogle Scholar
  28. Knonvall, G., and R. C. Williams, Jr. 1969. Differences in anti-protein A activity among IgG subgroups. J. Immunol. 103: 828 – 833.Google Scholar
  29. Laemmli, V. K. 1970. Cleavage of standard proteins during the assembly of the head of bacteriaphage T4. Nature (London) 227: 680 – 685.CrossRefGoogle Scholar
  30. Lennette, E. T., and D. A. Lennette. 1978. Immune adherence hemagglutination: alternative to complement-fixa- tion serology. J. Clin. Microbiol. 7: 282 – 285.PubMedGoogle Scholar
  31. Lennette, E. T., and D. A. Lennette. 1986. Immune adherence hemagglutination, p. 209–218. InS. Specter and G. L. Lancz (ed.), Clinical virology manual. Elsevier Science Publishing Co., New York.Google Scholar
  32. Mims, C. S., and D. O. White. 1984. The immune response to viral infection, p. 87–131. InC. S. Mims and D. O. White (ed.), Viral pathogenesis and immunology. Black- well Scientific Publishers, Palo Alto, Calif.Google Scholar
  33. Morgan-Capner, P., R. S. Tedder, and J. E. Mace. 1983. Rubella-specific IgM reactivity in sera from cases of infectious mononucleosis. J. Hyg. 90: 407 – 413.CrossRefGoogle Scholar
  34. Mortimer, P. P., R. S. Tedder, M. H. Hambling, M. S. Shafi, F. Burkhardt, and U. Schilt. 1981. Antibody capture radioimmunoassay for anti-rubella IgM. J. Hyg. 86: 139 – 153.CrossRefGoogle Scholar
  35. Mushahwar, I. K., and T. A. Brawner. 1986. Radioimmunoassay, p. 111–131. InS. Specter and G. J. Lancz (ed.), Clinical virology manual. Elsevier Science Publishing Co., New York.Google Scholar
  36. Mushahwar, I. K., and L. R. Overby. 1983. Radioimmune assays for diagnosis of infectious diseases, p. 167–194. InF. S. Ashkar (ed.), Radiobioassays. CRC Press, Boca Raton, Fla.Google Scholar
  37. Nelson, D. S. 1963. Immune adherence. Adv. Immunol. 3: 131 – 180.CrossRefGoogle Scholar
  38. Neumann, P. W., and J. M. Weber. 1983. Single radial hemolysis test for rubella immunity and recent infection. J. Clin. Microbiol. 17: 28 – 34.PubMedGoogle Scholar
  39. Palmer, D. F., and H. L. Casey. 1981. A guide to the performance of the standardized diagnostic complement fixation method and adaptation to micro test. Centers for Disease Control, Atlanta.Google Scholar
  40. Palmer, D. F., J. J. Cavallaro, K. Herrmann, J. A. Stewart, and K. W. Walls. 1977. Procedural guide for the serodiagnosis of toxoplasmosis, rubella, cytomegalic inclusion disease, and herpes simplex, pp. 24–56, 90-99. Immunology Series No. 5. U.S. Department of Health, Education, and Welfare, Centers for Disease Control, Atlanta.Google Scholar
  41. Parratt, D., H. McKenzie, K. H. Nielsen, and S. J. Cobb. 1982. Radioimmunoassay of antibody and its clinical applications, p. 19–31. John Wiley & Sons Ltd., Chichester, England.Google Scholar
  42. Pass, R. F., P. D. Griffiths, and A. M. August. 1983. Antibody response to cytomegalovirus after renal transplantation: comparison of patients with primary and recurrent infections. J. Infect. Dis. 147: 40 – 46.PubMedCrossRefGoogle Scholar
  43. Pattison, J. R. (ed.). 1982. Laboratory investigation of rubella, p. 19–25. Public Health Laboratory Service, Monograph Series No. 16, Her Majesty’s Stationery Office, London.Google Scholar
  44. Pattison, J. R., J. E. Mace, and D. S. Dane. 1976. The detection and avoidance of false-positive reactions in tests for rubella-specific IgM. J. Med. Microbiol. 9: 355 – 357.PubMedCrossRefGoogle Scholar
  45. Rao, N., D. T. Waruszewski, J. A. Armstrong, R. W. Atchison, and M. Ho. 1977. Evaluation of anticomplement immunofluorescence test in cytomegalovirus infection. J. Clin. Microbiol. 6: 633 – 638.PubMedGoogle Scholar
  46. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 27: 493 – 497.Google Scholar
  47. Russell, S. M., D. McCahon, and A. S. Beare. 1975. A single radial hemolysis technique for the measurement of influenza antibody. J. Gen. Virol. 27: 1 – 10.PubMedCrossRefGoogle Scholar
  48. Saragadharan, M. G., M. Popovic, L. Bruch, J. Schupbach, and R. C. Gallo. 1984. Antibodies reactive with a human T lymphotropic retrovirus (HTLV-III) in the sera of patients with acquired immune deficiency syndrome. Science 224: 506 – 508.CrossRefGoogle Scholar
  49. Schmidt, N. J., E. H. Lennette, and J. Dennis. 1968. Characterization of antibodies produced in natural and experimental coxsackievirus infections. J. Immunol. 100: 99 – 106.PubMedGoogle Scholar
  50. Schupbach, J., O. Haller, M. Vogt, R. Luthy, H. Joller, O. Oelz, M. Popovic, M. G. Sarngadharan, and R. C. Gallo. 1985. Antibodies to HTLV-III in Swiss patients with AIDS and pre-AIDS and in groups at risk for AIDS. N. Engl. J. Med. 312: 265 – 270.PubMedCrossRefGoogle Scholar
  51. Shekarchi, I. C., and J. L. Sever. 1986. Enzyme immunoassay, p. 133–146. InS. Specter and G. L. Lancz (ed.), Clinical virology manual. Elsevier Science Publishing Co., New York.Google Scholar
  52. Sissons, J. G., and M. B. A. Oldstone. 1980. Antibody- mediated destruction of virus infected cells. Adv. Immunol. 29: 209 – 260.CrossRefGoogle Scholar
  53. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electropho- retic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350 – 4354.PubMedCrossRefGoogle Scholar
  54. U.S. Public Health Service. 1965. Standardized diagnostic complement fixation method and adaptation to micro test. Public Health Service Publication no. 1228 (public health monograph no. 74). U.S. Government Printing Office, Washington, D.C.Google Scholar
  55. Vesikari, T., and A. Vaheri. 1968. Rubella: a method for rapid diagnosis of a recent infection by demonstration of the IgM antibodies. Br. Med. J. 1: 221 – 223.PubMedCrossRefGoogle Scholar
  56. Voller, A., and D. E. Bidwell. 1975. A simple method for detecting antibodies to rubella. Br. J. Exp. Pathol. 56: 338 – 339.PubMedGoogle Scholar
  57. Voller, A., and D. E. Bidwell. 1976. Enzyme immunoassays for antibodies in measles, cytomegalovirus infections and after rubella vaccination. Br. J. Exp. Pathol. 57: 243 – 247.PubMedGoogle Scholar
  58. Wilson, M. B., and P. K. Nakane. 1978. Recent developments in the periodate method of conjugating horseradish peroxidase, p. 215–224. InW. Knass, K. Holubar and G. Wick (ed.), Immunofluorescence and related staining techniques. Elsevier/North Holland, Amsterdam.Google Scholar
  59. Wolff, K. L., D. J. Muth, B. W. Hudson, and D. W. Trent. 1981. Evaluation of the solid-phase radioimmunoassay for diagnosis of St. Louis encephalitis infection in humans. J. Clin. Microbiol. 14: 135 – 140.PubMedGoogle Scholar
  60. Wood, R. J., and T. M. Durham. 1980. Reproducibility of serological titers. J. Clin. Microbiol. 11: 541 – 545.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Kenneth L. Herrmann

There are no affiliations available

Personalised recommendations