Food Web Interactions in Lakes

  • Larry B. Crowder
  • Ray W. Drenner
  • W. Charles Kerfoot
  • Donald J. McQueen
  • Edward L. Mills
  • Ulrich Sommer
  • Craig N. Spencer
  • Michael J. Vanni


Why study food webs in lakes? From a basic research perspective, ecological studies of lake food webs provide distinct advantages over studies in many terrestrial systems (Lampert 1987). Lake food webs are composed of organisms with relatively fast population turnover rates which interact in a relatively closed system. These features allow us to readily observe the often rapid dynamics of these systems or to experimentally manipulate these food webs and quickly assess the system response. Enclosures, ponds, and whole-lake manipulations are extremely useful experimental tools that have allowed aquatic ecologists to test hypotheses on food web structure and function that would have been difficult or impossible to address in many terrestrial systems.


Zooplankton Community Largemouth Bass Planktivorous Fish Invertebrate Predator Zooplankton Community Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. A. 1984. Foraging time optimization and interactions in food webs. Am. Nat. 124:80–96.CrossRefGoogle Scholar
  2. Barel, C. D. N., R. Dorit, P. H. Greenwood, G. Fryer, N. Hughes, P. B. N. Jackson, H. Kawanabe, R. H. Lowe-McConnell, M. Nagoshi, A. J. Ribbink, E. Trewavas, F. Witte and K. Yamaaoka. 1985. Destruction of fisheries in Africa’s lakes. Nature 315:19–20.CrossRefGoogle Scholar
  3. Bergquist, A. M., S. R. Carpenter and J. C. Latino. 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr. 30:1037–1045.CrossRefGoogle Scholar
  4. Brooks, J. L. 1969. Eutrophication and changes in the composition of zooplankton. in: Eutrophication: Causes, consequences, correctives. 236–255. Washington D.C.: National Academy of Sciences.Google Scholar
  5. Brooks, J. L. and S. I. Dodson. 1965. Predation, body size, and composition of plankton. Science 150:28–35.PubMedCrossRefGoogle Scholar
  6. Carpenter, S. R., J. F. Kitchell and J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–639.CrossRefGoogle Scholar
  7. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He and C. N. von Ende. 1987. Regulation of lake primary productivity by food-web structure. Ecology 68:1863–1876.CrossRefGoogle Scholar
  8. Chow-Fraser, P. and C. K. Wong. 1986. Dietary change during development in the freshwater calanoid copepod Epischura lacustris Forbes. Can. J. Fish. Aquat. Sci. 43:938–944.CrossRefGoogle Scholar
  9. Cohen, J. 1978. Food webs and niche space. Princeton: Princeton University Press.Google Scholar
  10. Crowder, L. B. and W. E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813.CrossRefGoogle Scholar
  11. Crowder, L. B., M. E. McDonald and J. A. Rice. 1987. Understanding recruitment of Lake Michigan fishes: The importance of size-based interactions between fish and zooplankton. Can. J. Fish. Aquat. Sci. 44 (Suppl. 2):141–147.CrossRefGoogle Scholar
  12. DeMott, W. R. and W. C. Kerfoot. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63:1949–1966.CrossRefGoogle Scholar
  13. Dodson, S. I. 1970. Complementary feeding niches sustained by size-selective predation. Limnol. Oceanogr. 15:131–137.Google Scholar
  14. Drenner, R. W., S. T. Threlkeld and M. D. McCracken. 1986. Experimental analysis of direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. Aquat. Sci. 43:1935–1945.CrossRefGoogle Scholar
  15. Edmondson, W. T. and A. Litt. 1982. Daphnia in Lake Washington. Limnol. Oceanogr. 27:272–293.CrossRefGoogle Scholar
  16. Frey, D. G. 1963. Limnology in North America. Madison: University of Wisconsin Press.Google Scholar
  17. Hall, D. J., S. T. Threlkeld, C. Burns and P. H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7:177–208.CrossRefGoogle Scholar
  18. Hambright, K. D., R. J. Trebatoski, R. W. Drenner and D. Kettle. 1986. Experimental study of the impacts of bluegill (Lepomis macrochirus) and largemouth bass (Micropterus salmoides) on pond community structure. Can. J. Fish. Aquat. Sci. 43:1171–1176.CrossRefGoogle Scholar
  19. Henrikson, L., H. G. Nyman, H. G. Oscarson and J. A. E. Stenson. 1980. Trophic changes without changes in external nutrient loading. Hydrobiologia 68:257–263.CrossRefGoogle Scholar
  20. Hrbacek, J., M. Dvorakova, V. Korinek and L. Prochazkova. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verh. Int. ver. Theoret. Angew. Limnol. 14:192–195.Google Scholar
  21. Hrbacek, J. 1962. Species composition and the amount of zooplankton in relation to fish stock. Rozpravy Ceshoslovenske Akademie Ved Rada Matematickych a Prodnich Ved 72:1–116.Google Scholar
  22. Hurlburt, S. H., J. Zedier and D. Fairbanks. 1971. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 178:639–641.Google Scholar
  23. Jenkins, R. M. 1979. Predator-prey relations in reservoirs, in: Predator-prey systems in fisheries management, ed. R. H. Stroud and H. Clepper, 123–134. Washington D.C.: Sport Fishing Institute.Google Scholar
  24. Kerfoot, W. C. 1987. Cascading effects and indirect pathways, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 57–70. Hanover: University Press of New England.Google Scholar
  25. Kerfoot, W. C. and W. R. DeMott. 1984. Food web dynamics: dependent chains and vaulting, in: Trophic interactions within aquatic ecosystems, ed. D. G. Meyers and J. R. Strickler, 347–382. Boulder: Westview Press.Google Scholar
  26. Kerfoot, W. C. and A. Sih, eds. 1987. Predation: Direct and indirect impacts on aquatic communities. Hanover: University Press of New England.Google Scholar
  27. Kerr, S. R. 1980. Niche theory and fisheries ecology. Trans. Amer. Fish. Soc. 109:254–257.CrossRefGoogle Scholar
  28. Kitchell, J. F., J. F. Koonce and P. S. Tennis. 1975. Phosphorus flux through fishes. Verh. Internat. Verein. Limnol. 19:2478–2484.Google Scholar
  29. Kitchell, J. F. and L. B. Crowder. 1986. Predator-prey interactions in Lake Michigan: Model predictions and recent dynamics. Env. Biol. Fish. 16:205–211.CrossRefGoogle Scholar
  30. Lampert, W. 1987. Predictability in lake ecosystems: The role of biotic interactions. in: Ecological studies, Vol. 61, ed. E.-D. Schulze and H. Zwolfer, 333–346. Berlin: Springer-Verlag.Google Scholar
  31. Lampert, W., W. Fleckner, H. Rai and B. E. Taylor. 1986. Phytoplankton control by grazing zooplankton: Study on the spring clear-water phase. Limnol. Oceanogr. 31:487–490.CrossRefGoogle Scholar
  32. Lasenby, D. C., T. G. Northcote and M. Furst. 1986. Theory, practice and effects of Mysis relicta introductions of North American and Scandinavian Lakes. Can. J. Fish. Aquat. Sci. 43:1277–1284.CrossRefGoogle Scholar
  33. Levine, S. H. 1976. Competitive interactions in ecosystems. Am. Nat. 110:903–910.CrossRefGoogle Scholar
  34. Levitan, C., W. C. Kerfoot and W. R. DeMott. 1985. Ability of Daphnia to buffer trout lakes against periodic nutrient inputs. Verh. Internat. Verein. Limnol. 22:1–7.Google Scholar
  35. Losos, B. and J. Hetesa. 1973. The effect of mineral fertilization and of carp fry on the composition and dynamics of plankton. Hydrobiological Studies 3:173–217.Google Scholar
  36. Lubchenco, J. 1978. Plant species diversity in a marine rocky intertidal community: Importance of herbivore food preference and algal competitive abilities. Am. Nat. 112:23–39.CrossRefGoogle Scholar
  37. Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24:253–72.CrossRefGoogle Scholar
  38. Lynch, M. and J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.CrossRefGoogle Scholar
  39. McQueen, D. J. and J. R. Post. 1984. Effects of planktivorous fish on zooplankton, phytoplankton and water chemistry. Lake and Reservoir Management, Proceedings of the Fourth Annual Conference, NALMS, McAfee, New Jersey.Google Scholar
  40. McQueen, D. J., J. R. Post and E. L. Mills. 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43:1571–1581.CrossRefGoogle Scholar
  41. Mills, E. L., J. L. Forney and K. J. Wagner. 1987. Fish predation and its cascading effect on the Oneida Lake food chain, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 118–131. Hanover: University Press of New England.Google Scholar
  42. Mittelbach, G. G. 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65:499–513.CrossRefGoogle Scholar
  43. Mittelbach, G. G. and P. L. Chesson. 1987. Predation risk: Indirect effects on fish populations, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 315–332. Hanover: University Press of New England.Google Scholar
  44. Neill, W. E. 1985. The effects of herbivore competition upon the dynamics of Chaoborus predation. Arch. Hydrobiol. 21: 483–491.Google Scholar
  45. Neill, W. E. and A. Peacock. 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes, in: Evolution and Ecology of Zooplankton Communities, ed. W. C. Kerfoot, 715–724. Hanover: University Press of New England.Google Scholar
  46. Noble, R. L. 1981. Management of forage fishes in impoundments of the southern United States. Trans. Amer. Fish. Soc. 110:738–750.CrossRefGoogle Scholar
  47. Pace, M. L. 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. Aquat. Sci. 41:1089–1096.CrossRefGoogle Scholar
  48. Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75.CrossRefGoogle Scholar
  49. Paine, R. T. 1980. Food webs, linkage interaction strength, and community infrastructure. J. Anim. Ecol. 49:667–685.CrossRefGoogle Scholar
  50. Pimm, S. L. 1980. Properties of food webs. Ecology 61:219–225.CrossRefGoogle Scholar
  51. Pimm, S. L. 1982. Food webs. London: Chapman and Hall.Google Scholar
  52. Porter, K. G. and R. McDonogough. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29:365–369.CrossRefGoogle Scholar
  53. Post, J. R. and D. J. McQueen. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17:79–89.CrossRefGoogle Scholar
  54. Power, M. E. 1984. Depth distribution of armored catfish: Predator induced resource avoidance? Ecology 65:523–528.CrossRefGoogle Scholar
  55. Power, M. E. 1987. Predator avoidance by grazing fishes in temperate and tropical streams: Importance of stream depth and prey size, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 333–351. Hanover: University Press of New England.Google Scholar
  56. Rigler, F. H. 1982. The relation between fisheries management and limnology. Trans. Amer. Fish. Soc. 111:121–132.CrossRefGoogle Scholar
  57. Ryder, R. A. 1965. A method for estimating the fish production of north-temperate lakes. Trans. Amer. Fish. Soc. 94: 214–218.CrossRefGoogle Scholar
  58. Scavia, D., G. L. Fahnenstiel, M. S. Evans, D. Jude and J. T. Lehman. 1986. Influence of salmonine predation and weather on long-term water quality trends in Lake Michigan. Can. J. Fish. Aquat. Sci. 43:435–443.CrossRefGoogle Scholar
  59. Schoenberg, S. A. and R. E. Carlson. 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42:291–302.CrossRefGoogle Scholar
  60. Shapiro, J., V. Lamarra and M. Lynch. 1975. Biomanipulation: An ecosystem approach to lake restoration, in: Proceeding of a symposium on water quality management through biological control, ed. P. L. Brezonik and J. L. Fox, 85–96. Gainesville: University of Florida.Google Scholar
  61. Shapiro, J. and D. I. Wright. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biol. 14:371–383.CrossRefGoogle Scholar
  62. Sih, A. 1980. Optimal behavior: Can foragers balance two conflicting demands? Science 210:1041–43.PubMedCrossRefGoogle Scholar
  63. Sih, A., P. Crowley, M. McPeek, J. Petrankaand, K. Strohmeier. 1985. Predation, competition, and prey communities: A review of field experiments. Ann. Rev. Ecol. Syst. 16: 269–305.CrossRefGoogle Scholar
  64. Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671.PubMedCrossRefGoogle Scholar
  65. Sommer, U. 1985a. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30:335–346.CrossRefGoogle Scholar
  66. Sommer, U. 1985b. Seasonal succession of phytoplankton in Lake Constance. BioScience 35:351–357.CrossRefGoogle Scholar
  67. Sommer, U., Z. M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106:433–471.Google Scholar
  68. Spencer, C. N. and D. L. King. 1984. Role of fish in regulation of plant and animal communities in eutrophic ponds. Can. J. Fish. Aquat. Sci. 41:1851–1855.CrossRefGoogle Scholar
  69. Spencer, C. N. and D. L. King. 1986. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144:183–192.CrossRefGoogle Scholar
  70. Threlkeld, S. T. 1987. Experimental evaluation of trophic-cascade and nutrient-mediated effects of planktivorous fish on plankton community structure, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 161–173. Hanover: University Press of New England.Google Scholar
  71. Vanni, M. J. 1986. Competition in zooplankton communities: Suppression of small species by Daphnia pulex. Limnol. Oceanogr. 31:1039–1056.CrossRefGoogle Scholar
  72. Vanni, M. J. 1987a. Effects of food availability and fish predation on a zooplankton community. Ecological monographs 57:61–88.CrossRefGoogle Scholar
  73. Vanni, M. J. 1987b. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.CrossRefGoogle Scholar
  74. Webster, K. and R. Peters. 1978. Some size-dependent inhibitions of larger cladocera filterers in filamentous suspensions. Limnol. Oceanogr. 23:1238–1245.CrossRefGoogle Scholar
  75. Werner, E. E. 1980. Niche theory in fisheries ecology. Trans. Amer. Fish. Soc. 109:257–260.Google Scholar
  76. Werner, E. E., J. F. Gilliam, D. J. Hall and G. G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548.CrossRefGoogle Scholar
  77. Werner, E. E. and J. F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15:393–425.CrossRefGoogle Scholar
  78. Wetzel, R. G. and P. H. Rich. 1973. Carbon in freshwater systems, in: Carbon and the Biosphere, ed. G. M. Woodwell and E. V. Pecan. U.S. AEC Symp. Ser. CONF-720510. Nat. Tech. Inform. Service, Springfield, VA.Google Scholar
  79. Williamson, C. E. 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnol. Oceanogr. 32:167–177.CrossRefGoogle Scholar
  80. Zaret, T. M. 1980. Predation in freshwater communities. New Haven: Yale University Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Larry B. Crowder
  • Ray W. Drenner
  • W. Charles Kerfoot
  • Donald J. McQueen
  • Edward L. Mills
  • Ulrich Sommer
  • Craig N. Spencer
  • Michael J. Vanni

There are no affiliations available

Personalised recommendations