Sensory Biology of Aquatic Animals pp 435-466 | Cite as
Aquatic Adaptations in Fish Eyes
Abstract
Of all the sense organs, eyes have probably attracted the most attention because of both their central importance and intricate construction. Darwin knew that such “organs of extreme perfection and complication” posed a crucial test of his theory because they seemed too good to have been shaped by natural selection (Darwin [1859] 1958). Since eyes must obey the optical laws of physics, fundamental physical constraints on their structure provide an important analytical basis for understanding adaptive ocular specializations. In light of these physical constraints, inferences about the selective forces that have shaped eye design can be made with some confidence, particularly in the study of aquatic eyes.
Keywords
Outer Segment Outer Nuclear Layer Spherical Aberration Chromatic Aberration External Limit MembranePreview
Unable to display preview. Download preview PDF.
References
- Ali, M.A. and Wagner, H.H. (1975) Distribution and development of retinomotor responses, in Vision in Fishes, Ali, M.A. (ed.), Plenum, New York, pp. 369–396.Google Scholar
- Allen, E.E. and Fernald, R.D. (1981) Scotopic visual threshold in the African cichlid fish, Haplochromis burtoni, Soc. Neuro. 7: 270.Google Scholar
- Allen, E.A. and Fernald, R.D. (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol. 157: 247–253.CrossRefGoogle Scholar
- Baburina, E.A. (1955) The eye of the retina in the Caspian shad, Dokl. Akad. Nauk. S.S.S.R., 100(6): 1167–1170.Google Scholar
- Bayliss, L.E., Lythgoe, R.J., and Tansley, K. (1936) Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin, Proc. R. Soc. B, 816: 95–113.CrossRefGoogle Scholar
- Beer, T. (1894) Die Accommodation des Fischauges, Pfluegers Archiv. Gesamte Physiol. Menschen Tiere, 58: 523–650.CrossRefGoogle Scholar
- Boll, F. (1877) Zur Anatomie und Physiologie der Retina, Arch. Anat. Physiol., 4: 783–787.Google Scholar
- Borwein, B. (1981) The retinal receptor: a description, in Vertebrate Photoreceptor Optics, Enoch, J.M. and Tobey, F.L., Jr (eds.), Springer-Verlag, New York, pp. 11–81.Google Scholar
- Brewster, D. (1816) On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarised light, Philos. Trans. R. Soc. Lond., 311–317.Google Scholar
- Burkhardt, D.A., Gottesman, J., Levine, J.S., and MacNichol, E.F., Jr. (1983) Cellular mechanisms for color-coding in holostean retinas and the evolution of color vision. Vision Res., 23: 1031–1041.PubMedCrossRefGoogle Scholar
- Burnside, B. and Nagle, B. (1983) Retinomotor movements of photoreceptors and retinal pigment epithelium: mechanisms and regulation, in Progress in Retinal Research, vol. 2, Osborne, N. and Chader, G. (eds.), Pergamon Press, New York, p. 67–109.Google Scholar
- Campbell, M. and Sands, P.J. (1984) Optical quality during crystalline lens growth, Nature, 312: 291–292.PubMedCrossRefGoogle Scholar
- Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye, Vision Res., 13: 1–8.PubMedCrossRefGoogle Scholar
- Clarke, G.L. (1936) On the depth at which fishes can see, Ecology, 17: 452–456.CrossRefGoogle Scholar
- Cuppy, W. (1941) How to Become Extinct, University of Chicago Press.Google Scholar
- Darwin, C. (1859) The Origin of Species, New American Library Edition (1958), p. 187.Google Scholar
- Daw, N.W. (1967) Goldfish retina: organization for simultaneous color contrast, Science, 158: 942–944.PubMedCrossRefGoogle Scholar
- Denton, E.J. and Warren, F.J. (1957) The photosensitive pigments in the retinae of deep-sea fish, J. Mar. Biol. Assoc. U.K., 36: 651–652.CrossRefGoogle Scholar
- Devons, S. (1985) Optics through the eyes of the medieval churchmen, in Science and Technology in Medieval Society, Long, P.O. (ed.), Ann. N.Y. Acad. Sci., pp. 205–224.Google Scholar
- Douglas, R.H. (1982) The function of the photomechanical movements in the retina of rainbow trout (Salmo gairdnerii), J. Exp. Biol., 96: 389–403.Google Scholar
- Douglas, R.H. and Wagner, H-J. (1984) Action specturm of photomechanical cone contraction in the catfish retina, Invest. Ophthalmol. Visual Sci., 25: 534–538.Google Scholar
- Easter, S.S., Johns, P.R., and Baumann, L.R. (1977) Growth of the adult goldfish eye. I Optics, Vision Res., 16: 469–476.CrossRefGoogle Scholar
- Eberle, H. (1968) Zapfenbau, Zapfenlänge und Chromatische Aberration im Auge von Lebistes reticulatus (Peters Guppy), Zool. Jb. Physiol., 74: 121–154.Google Scholar
- Eigenmann, C.H. and Shafer, G.E. (1900) The mosaic of single and twin cones in the retinas of fishes, Am. Nat., 34: 109–118.CrossRefGoogle Scholar
- Fernald, R.D. (1980) Optic nerve distention in a cichlid fish, Vision Res., 20: 1015–1019.PubMedCrossRefGoogle Scholar
- Fernald, R.D. (1981) Chromatic organization of a cichlid fish retina, Vision Res., 21: 1749–1753.PubMedCrossRefGoogle Scholar
- Fernald, R.D. (1982a) Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol., 206: 379–389.PubMedCrossRefGoogle Scholar
- Fernald, R.D. (1982b) Cone mosaic in a teleost retina: no difference between light and dark adapted states, Experentia, 38: 1337–1338.CrossRefGoogle Scholar
- Fernald, R.D. (1983) Neural basis of visual pattern recognition, in Advances in Vertebrate Neuroethology, Ewert, J-P., Capranica, R.R., and Ingle, D.J. (eds.), Plenum, New York, pp. 569–580.Google Scholar
- Fernald, R.D. (1984) Vision and behavior in an African cichlid fish, Am. Sci., 72(1): 58–65.Google Scholar
- Fernald, R.D. (1985a) Growth of the teleost eye: novel solutions to complex constraints, Environ. Biol. Fishes, 13: 113–123.CrossRefGoogle Scholar
- Fernald, R.D. (1985b) Eye movements in the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol., 156: 199–208.CrossRefGoogle Scholar
- Fernald, R.D. and Johns, P.R. (1980) Retinal structure and growth in the cichlid fish, Haplochromis burtoni, Invest. Ophthalmol. Visual Sci. (supp.) 69.Google Scholar
- Fernald, R.D. and Liebman, P. (1980) Visual receptor pigments in the African cichlid fish, Haplochromis burtoni, Vision Res., 20: 857–864.PubMedCrossRefGoogle Scholar
- Fernald, R.D. and Scholes, J. (1985a) A zone of exclusive rod neurogenesis in the teleost retina, Soc. Neuro. Abst., 11: 810.Google Scholar
- Fernald, R.D. and Scholes, J. (1985b) Retinal neurogenesis in teleosts: a second germinal zone, Submitted.Google Scholar
- Fernald, R.D. and Wright, S. (1983) Maintenance of optical quality during crystalline lens growth, Nature, 301: 618–620.PubMedCrossRefGoogle Scholar
- Fernald, R.D. and Wright, S. (1985a) Growth of the visual system of the African cichlid fish, H. burtoni: optics, Vision Res., 25(2): 155–161.PubMedCrossRefGoogle Scholar
- Fernald, R.D. and Wright S. (1985b) Growth of the visual system of the African cichlid fish, H. burtoni: accommodation, Vision Res., 25(2): 163–170.PubMedCrossRefGoogle Scholar
- Fernald, R.D., Wright, S., and Shelton, L.C. (1986) Growth of the visual system of the African cichlid fish, H. burtoni: optic field and retinal field, (in preparation).Google Scholar
- Fincham, W.H.A. (1959) Optics, Hatton Press, London.Google Scholar
- Fletcher, A., Murphy T., and Young, A. (1954) Solutions of two optical problems, Proc. R. Soc. Lond. A., 223: 216–225.CrossRefGoogle Scholar
- Fraley, N.B. and Fernald, R.D. (1982) Social control of developmental rate in the African cichlid fish, Haplochromis burtoni, Z. Tierpsychol. 60: 66–82.Google Scholar
- Frederikson, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deep-sea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk, Medd. Dan. Naturhist. Foren., 136: 233–244.Google Scholar
- Garten, S. (1907) Die Veränderungen der Netzhaut durch Licht, Graefe-Saemisch Handbuch der gesamten Augenheilkunde, Leipzig, pp. 250–280.Google Scholar
- Geiger, W. (1956) Quantitative Untersuchungen über das Gehirn der Knochenfische, mit besonderer Berücksichtigung seines relativen Wachstums, Acta Anat. 26: 121–163; 27: 324–350.PubMedCrossRefGoogle Scholar
- Hairston, N.G., Jr. Li, K.T., and Easter, S.S., Jr. (1982) Fish vision and the detection of planktonic prey, Science, 218: 1240–1242.PubMedCrossRefGoogle Scholar
- Herzog, H. (1905) Experimented Untersuchungen zur Physiologie der Bewegungsorgange in der Netzhaut, Arch. Anat. Physiol. (Physiol. Abst.), 516: 413–464.Google Scholar
- Hobson, E.S. (1972) Activity of Hawaiian reef fishes during evening and morning transitions between daylight and darkness, U.S. Fish. Bull. 70: 715–740.Google Scholar
- Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of aquatic eyes, Vision Res., 20: 197–200.PubMedCrossRefGoogle Scholar
- Johns, P.R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal retinal cell number, J. Comp. Neurol., 176: 331–342.PubMedCrossRefGoogle Scholar
- Johns, P.R. and Fernald, R.D. (1981) Genesis of rods in teleost fish retina, Nature, 293: 141–142.PubMedCrossRefGoogle Scholar
- Kahmenn, H. (1936) Über das foveale sehen der Wirbeltiere. I. Über die Fovea centralis und die Fovea lateralis bei einigen Wirbeltieren. Albrecht von Graefe’s Arch. Ophthalmol., 135: 265–276.Google Scholar
- Kirschfeld, K. (1976) The resolution of lens and compound eyes, in Neural Principles of Vision, Zettler, F. and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.CrossRefGoogle Scholar
- Kong, K.L., Fung, Y.M., and Wasserman, G.S. (1980) Filter mediated color vision with one visual pigment, Science, 207: 783–786.PubMedCrossRefGoogle Scholar
- Kühne, W. (1887) Fortgesetzte Untersuchungen über die Retina und die Pigmente des Auges, Untersuch. Physiol. Inst. Univ. Heildelberg, 2: 89–109.Google Scholar
- Kunz, Y. and Ennis, S. (1983) Ultrastructural diurnal changes of the retinal photoreceptors in the embryo of a viviparous teleost (Poecilia reticulata P.), Cell. Differ. 13: 115–123.PubMedCrossRefGoogle Scholar
- Land, M.C. (1981) Optics and vision in invertebrates, in Handbook of Sensory Physiology, vol. VII 6B, Autrum, H.J. (ed.), Springer-Verlag, Berlin, pp. 472–592.Google Scholar
- Liebman, P.A. and Entine, G. (1964) Sensitive low-light level microspectrophotometer: detection of photo-sensitive pigments of retinal cones, J. Opt. Soc. Am., 54: 1451–1459.PubMedCrossRefGoogle Scholar
- Liebman, P.A., Carroll, S., and Laties, A. (1969) Spectral sensitivity of retinal screening pigment migration in the frog, Vision Res. 9: 377–384.PubMedCrossRefGoogle Scholar
- Locket, N.A. (1977) Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 67–192.Google Scholar
- Lowe, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fishes, Vision Res., 18: 715–722.CrossRefGoogle Scholar
- Luneberg, R.K. (1944) Mathematical Theory of Optics, Brown University Press, Providence, R.I., pp. 208–213.Google Scholar
- Lyall, A.H., (1957a) The growth of the trout retina, Q. J. Microsc. Sci., 98: 101–110Google Scholar
- Lyall A.H. (1957b) Cone arrangements in teleost retinae. Q. J. Microsc. Sci., 98: 189–209.Google Scholar
- Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.Google Scholar
- Marc, R.E. and Sperling, H.G. (1976) Color receptor identities of goldfish cones, Science, 191: 487–489.PubMedCrossRefGoogle Scholar
- Marshall, N.B. (1971) Explorations in the life of fishes, Harvard University Press, Cambridge, Mass.Google Scholar
- Matthiessen, L. (1882) Über die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Krystalllinse und den Dimensionen des Auges bestehen, Pflügers Arch ges Physiol, 27: 510–523.CrossRefGoogle Scholar
- Matthiessen, L. (1886) Über den physikalisch-optischen Bau des Auges der Cetacean und der Fische, Pflügers Archiv. Gesamte Physiol., Menschen Tierre, 38: 521–528.CrossRefGoogle Scholar
- Maxwell, J.C. (1854) Some solutions of problems, Cambridge & Dublin Math. J., 1: 76–78.Google Scholar
- Meyer, D.L. and Schwassmann, H.O. (1970) Electrophysiological method for determination of refractive state in fish eyes, Vision Res., 10: 1301–1303.PubMedCrossRefGoogle Scholar
- Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes, Vision Res., 8: 1377–1380.PubMedCrossRefGoogle Scholar
- Müller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus), Zool. Jb. Allgemein Zool. Physiol. Tier, 63: 275–324.Google Scholar
- Munk, O. (1966) Ocular anatomy of some deep-sea teleosts, Dana-Rep Carlsberg Found., 70: 1–62.Google Scholar
- Munz, F.W. (1958) Photosensitive pigments from the retinae of certain deep sea fishes, J. Physiol., 140: 220–225.PubMedGoogle Scholar
- Munz, F.W. and McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 193–274.Google Scholar
- Nuboer, J.F.W. and van Genderen-Takken, H. (1978) The artifact of retinoscopy, Vision Res., 18: 1091–1096.PubMedCrossRefGoogle Scholar
- Ohtsuka, T. (1985) Relation of spectral types to oil droplets in cones of turtle retina, Science, 229: 874–976.PubMedCrossRefGoogle Scholar
- Orlov, O.Y. and Gamburtzeva, A.G. (1975) Dynamics of corneal colorations in fish, Hexagrammos octagrammus, Biofizika, 21: 362–365.Google Scholar
- Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. Elegans Trewavas 1933 (Pisces, Cichlidae), Neth. J. Zool., 31: 650–700.CrossRefGoogle Scholar
- Powers, M.K. and Bassi, C.J. (1981) Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina, Neurosci. Abst., 7: 541.Google Scholar
- Powers, M.K. and Easter, S.S., Jr. (1983) Behavioral significance of retinal structure and function in fishes, in Fish Neurobiology, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 377–404.Google Scholar
- Pumphrey, R.J. (1961) Concerning vision, in The Cell and the Organism, Ramsay, J.A. (ed.), Cambridge University Press, pp. 193–208.Google Scholar
- Sadler, J.D. (1973) The focal length of the fish eye lens and visual acuity, Vision Res., 13: 417–423.PubMedCrossRefGoogle Scholar
- Scholes, J.H. (1975) Colour receptors and the synaptic connexions in the retina of a cyprinid fish, Philos. Trans. R. Soc. B Lond., 270: 61–118.CrossRefGoogle Scholar
- Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles of Vision, Zettler, F., and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.Google Scholar
- Scroczyński, S. (1975a) Die sphärische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdnerii Rich), Zool. Jb. Physiol., 79: 204–212.Google Scholar
- Scroczyński, S. (1975b) Die sphärische Aberration der Augenlinse des Hechts (Esox luciusL.), Zool. Jb. Physiol., 79: 547–558.Google Scholar
- Scroczyński, S. (1977) Spherical aberration of crystalline lens in the roach Rutilus rutilus L., J. Comp. Physiol., 121: 135–144.CrossRefGoogle Scholar
- Sivak, J.G (1982) Optical characteristics of the eye of the flounder, J. Comp. Physiol., 146: 345–349.CrossRefGoogle Scholar
- Sivak, J.G., and Bobier, W.R. (1978) Chromatic aberration of the fish eye and its effect on refractive state, Vision Res., 18: 453–455.PubMedCrossRefGoogle Scholar
- Soemmering, D.W. (1818) De Oculorum Hominis Animaliumque Secone Horizontali Commentatio, Vandenhoeck and Ruprecht, Göttingen.Google Scholar
- Stevens, J.K. and Parsons, K.E. (1980) A fish with double vision, Nat. Hist., 89: 62–67.Google Scholar
- Tansley, K. (1965) Vision in Vertebrates, Chapman and Hall, London.Google Scholar
- Vilter, V. (1953) Existence d’une rétine à plusieur mosaîques photoréceptrice chez un poisson abyssal bathypelagique, Bathylagus benedicei, C. R. Soc. Biol. (Paris), 147: 1937–1939.Google Scholar
- Walls, G.L. (1942) The vertebrate eye and its adaptive radiation, Hafner, New York [1962].Google Scholar
- Westheimer, G. (1968) “The eye”, in Mountcastle, V.B. (ed.), Medical Physiology, 12th ed., Mosby, St. Louis, pp. 1532–1553.Google Scholar
- Young, R.W. (1967) The renewal of photoreceptor outer segments, J. Cell Biol., 33: 61–72.PubMedCrossRefGoogle Scholar
- Young, T. (1801) On the mechanism of the eye, Philos. Trans., 92: 23–88.Google Scholar