Thermal Alteration of Chert in the Ophiolite Basement of Southern Central America

  • Hans-Jürgen Gursky
  • Monika M. Gursky

Overview

Radiolarian chert and volcaniclastic-rich siliceous rocks of the Nicoya Complex were studied by optical mineralogy, X-ray diffractometry, and SEM. Various phenomena of thermal alteration occur due to post-depositional mafic magmatism. Progressive destruction of sedimentary features is classified into four stages from weak to complete recrystallization. Increases in quartz crystallinity reflecting diagenetic to high-grade thermometamorphic conditions parallel the recrystallization noted in thin sections. Mineral assemblages especially in volcaniclastic-rich rocks help estimate the metamorphic grade. Chert with smectite and illite-smectite mixed-layer minerals or heulandite and clinoptilolite, respectively, indicates low-temperature conditions of less than 200°C. Piemontite, garnet, and diopside reflect low to medium or high (?) grade, very low-pressure contact metamorphism. Mineral assemblages with scapolite were found close to igneous contacts and indicate medium to high grade metamorphism. Secondary minerals in veins with dominantly barite and zeolites commonly formed under low temperature conditions of less than 150°C. These different petrologic changes are discussed as to their usefulness in defining thermal grades.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arriortua MA, Elorza J, Amigo JM 91984) Indices de cristalinidad y volumen de la celda unidad de algunos cuarzos diagenéticos presentes en la Cuenca Vasco-Cantábrica. Congreso Español de Geología 2:217–226.Google Scholar
  2. Bustillo MA, Iglesia A La (1979) Sílex: Relación entre índices de cristalinidad y ambientes de sustitución. Boletín Geológico Minero 90(6):588–594.Google Scholar
  3. Cann JR (1979) Metamorphism in the ocean crust. In: Talwani M, Harrison CG, Hayes DE (eds) Maurice Ewing Series, Deep Drilling Results in the Atlantic Ocean: Ocean Crust; American Geophysical Union, Washington, D.C., pp 230–238.Google Scholar
  4. Church TM (1979) Marine barite. In: Burns RG (ed) Marine Minerals. Reviews in Mineralogy 6:175–209.Google Scholar
  5. Dengo G (1962) Estudio geológico de la Región de Guanacaste, Costa Rica. Instituto Geográfico Nacional de Costa Rica, San José, 112 pp.Google Scholar
  6. Dunoyer de Segonzac G (1970) The formation of clay minerals during the diagenesis and low-grade metamorphism: A review. Sedimentology 15:281–346.CrossRefGoogle Scholar
  7. Elorza JJ, Arriortua MA, Amigo JM (1985) Indices de cristalinidad en los sílex de carácter turbidítico de Barrika (NE de Bilbao). Boletín Geológico Minero 96(1): 74–81.Google Scholar
  8. Gursky H-J (1984) Die Sedimentgesteine im ophiolithischen Nicoya-Komplex (Ober-Jura bis Alt-Tertiär von Costa Rica): Ihre Verbreitung, Fazies und geologische Geschichte mit besonderer Berücksichtigung der Radiolarite. PhD Thesis, University of Marburg, Marburg, FRG, 394 pp.Google Scholar
  9. Gursky H-J (1985) Composition and origin of the sedimentary rocks in the Nicoya Ophiolite Complex (Jurassic—lower Tertiary, southern Central America)–a survey. Zentralblatt Geologie Paläontologie Teil 1:1197–1205.Google Scholar
  10. Gursky H-J, Schmidt-Effing R (1983) Sedimentology of radiolarites within the Nicoya Ophiolite Complex, Costa Rica, Central America. In: Iijima A, Hein JR, Siever R (eds) Developments in Sedimentology 35. Elsevier, Amsterdam, pp 127–142.Google Scholar
  11. Gursky H-J, Schmidt-Effing R, Strebin MM, Wildberg H (1982) The ophiolite sequence in northwestern Costa Rica (Nicoya Complex): Outlines of stratigraphical, geochemical, sedimentological, and tectonical data. Actas 5 Congreso Latinoamericano de Geologia, Buenos Aires 3:607–619.Google Scholar
  12. Gursky H-J, Gursky MM, Schmidt-Effing R, Wildberg H (1984) Karten zur Geologie von Nordwest-Costa Rica (Mittelamerika) mit Erläuterungen. Geologica et Palae-ontologica 18:173–182.Google Scholar
  13. Gursky MM (1986) Tektonische und thermische Deformationen im ophiolithischen Nicoya-Komplex und seinem sedimentären Auflager (Nicoya-Halbinsel, Costa Rica) and ihre Bedeutung für die geodynamische Entwicklung im südlichen Zentralamerika. PhD Thesis, University of Marburg, Marburg, FRG, 230 pp.Google Scholar
  14. Hein JR, Kuijpers EP, Denyer P, Sliney RE (1983) Petrology and geochemistry of Cretaceous and Paleogene cherts from western Costa Rica. In: Iijima A, Hein JR, Siever R. (eds) Developments in Sedimentology 36. Elsevier, Amsterdam, pp 143–174.Google Scholar
  15. Iijima A, Kakuwa Y, Yamazaki K, Yanagimoto Y (1978) Shallow-sea, organic origin of the Triassic bedded chert in central Japan. Journal of the Faculty of Science, University of Tokyo, Section II, 19(5):369–400.Google Scholar
  16. Jaeger JC (1957) Temperatures outside of a cooling intrusive sheet. American Journal of Science 255:306–318.CrossRefGoogle Scholar
  17. Jefferis RG, Voight B (1981) Fracture analysis near the mid-ocean plate boundary, Reykjavik-Hvalfjördur area, Iceland. Tectonophysics 76(3/4): 171–236.CrossRefGoogle Scholar
  18. Kakuwa Y (1984) Preservation of siliceous skeletons in siliceous rocks. Scientific Papers of the College of Arts and Sciences, University of Tokyo 34(1/2):43–61.Google Scholar
  19. Keller WD, Stone CG, Hoersch AL (1985) Textures of Paleozoic chert and novaculite in the Ouachita Mountains of Arkansas and Oklahoma and their geological significance. Geological Society of America Bulletin 96:1353–1363.CrossRefGoogle Scholar
  20. Kuijpers EP (1980) The geologic history of the Nicoya Ophiolite Complex, Costa Rica, and its geotectonic significance. Tectonophysics 68:233–255.CrossRefGoogle Scholar
  21. Liou JG, Ernst WG (1979) Oceanic ridge metamorphism of the Eastern Taiwan Ophiolite. Contributions to Mineralogy and Petrology 68:335–348.CrossRefGoogle Scholar
  22. Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the mid-Atlantic ridge near 24°E and 30°N. Philosophical Transactions of the Royal Society London A 268: 589–603.CrossRefGoogle Scholar
  23. Murata KJ, Norman MB (1976) An index of crystallinity for quartz. American Journal of Science 276:1120–1130.CrossRefGoogle Scholar
  24. Spry A (1969) Metamorphic Textures. Pergamon, Oxford, U.K. 350 pp.Google Scholar
  25. Thurston DR (1972) Studies on bedded cherts. Contributions to Mineralogy and Petrology 36:329–334.CrossRefGoogle Scholar
  26. Tröger WE (1969) Optische Bestimmung der gesteinsbildenden Minerale Teil 2 Textband. Schweizerbart, Stuttgart, 822 pp.Google Scholar
  27. Tullis J, Yund RA (1982) Grain-growth kinetics of quartz and calcite aggregates. Journal of Geology 90(3): 301–318.CrossRefGoogle Scholar
  28. Turner FJ (1968) Metamorphic Petrology. McGraw-Hill, New York, 403 pp.Google Scholar
  29. Wildberg HGH (1984) Der Nicoya-Komplex, Costa Rica, Zentralamerika: Magmatismus and Genese eines polygenetischen Ophiolith-Komplexes. Münstersche Forschungen zur Geologie und Paläontologie 62:1–123.Google Scholar
  30. Wildberg H, Gursky H-J, Schmidt-Effing R, Strebin M (1981) Der Ophiolith-Komplex der Halbinsel Nicoya, Costa Rica, Zentralamerika. Zentralblatt Geologie und Paläontolgie Teil 1(3/4): 195–209.Google Scholar
  31. Winkler HGF (1976) Petrogenesis of Metamorphic Rocks, 3d Ed. Springer, Berlin, 348 pp.Google Scholar
  32. Winkler HGF (1979) Petrogenesis of Metamorphic Rocks, 4th Ed. Springer, Berlin.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Hans-Jürgen Gursky
  • Monika M. Gursky

There are no affiliations available

Personalised recommendations