Advertisement

Some Binary Partition Functions

  • Bruce Reznick
Chapter
Part of the Progress in Mathematics book series (PM, volume 85)

Keywords

Partition Function Large Power Algebraic Integer Stirling Number Infinite Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    Andrews, G., Congruence properties of the m-ary partition function, J. Number Theory, 3 (1971), 104–110. MR 42#3043.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [A2]
    Andrews, G., The Theory of Partitions. Encyc. of Math, and Appl., v. 2, Addison-Wesley, Reading 1976, MR 58#27738.Google Scholar
  3. [B]
    de Bruijn, N. G., On Mahler’s partition problem, Indag. Math. 10 (1948), 210–220. MR 10, 16d.Google Scholar
  4. [C1]
    Carlitz, L., A problem in partitions related to the Stirling numbers, Riv. Mat. Univ. Parma 5 (1964), 61–75. MR 34#158.MathSciNetzbMATHGoogle Scholar
  5. [C2]
    Carlitz, L., A problem in partitions related to the Stirling numbers, Bull. Amer. Math. Soc. 70 (1964), 275–278. MR 28#1135.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [C3]
    Carlitz, L., Generating functions and partition problems. Pp. 144–169, in Proc. Sympos. Pure Math. VIII, Amer. Math. Soc., Providence, 1965, MR 31 #72.Google Scholar
  7. [C4]
    Churchhouse, R. F., Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 66 (1969), 371–376. MR 40#1356.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [D1]
    Dirdal, G., On restricted m-ary partitions, Math. Scand. 37 (1975), 51–60. MR 52#10582.MathSciNetzbMATHGoogle Scholar
  9. [D2]
    Dirdal, G., Congruences for m-ary partitions, Math. Scand. 37 (1975), 76–82. MR 52#10583.MathSciNetzbMATHGoogle Scholar
  10. [E1]
    Euler, L., Introductio in analysin infinitorum. Lausanne, 1748, in Opera Omnia Series Prima Opera Math. vol. 8, B. G. Teubner, Leipzig, 1922.Google Scholar
  11. [E2]
    Euler, L., De partitione numerorum, Nov. com. acad. sci. Petro. 3 (1750/1751), 125–169. In Opera Omnia Series Prima Opera Math, vol. 2, pp. 254–294, B. G. Teubner, Leipzig, 1915.Google Scholar
  12. [G1]
    Gupta, H., Proof of the Churchhouse conjecture concerning binary partitions, Proc. Camb. Phil. Soc. 70 (1971), 53–56. MR 45#4986.zbMATHCrossRefGoogle Scholar
  13. [G2]
    Gupta, H., A simple proof of the Churchhouse conjecture concerning binary partitions, Ind. J. Pure Appl. Math. 3 (1972), 791–794. MR 48#8377.zbMATHGoogle Scholar
  14. [G3]
    Gupta, H., On m-ary partitions, Proc. Camb. Phil. Soc 71 (1972), 343–345. MR 45#204.zbMATHCrossRefGoogle Scholar
  15. [G4]
    Gupta, H., A direct proof of the Churchhouse conjecture concerning binary partitions, Ind. J. Math. 18 (1976), 1–5. MR 82b:10013.zbMATHGoogle Scholar
  16. [GP]
    Gupta, H. and P. A. B. Pleasants, Partitions into powers of m, Ind. J. Pure Appl. Math. 10 (1979), 655–694. MR 80f:10014.MathSciNetzbMATHGoogle Scholar
  17. [HL]
    Hirschhorn, M. D. and J. H. Loxton, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 78 (1975), 437–442. MR 52#3045.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [KAH]
    Klosinski, L. F., G. L. Alexanderson and A. P. Hillman, The William Lowell Putnam Mathematical Competition, Amer. Math. Monthly 91 (1984), 487–495.MathSciNetCrossRefGoogle Scholar
  19. [K]
    Knuth, D. E., An almost linear recurrence, Fib. Q. 4 (1966), 117–128. MR 33#7317.MathSciNetzbMATHGoogle Scholar
  20. [LI]
    Lehmer, D. H., On Stern’s diatomic series, Amer. Math. Monthly 36 (1929), 59–67.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [L2]
    Lind, D. A., An extension of Stern’s diatomic series, Duke Math. J. 36 (1969), 55–60. MR 30 #6810.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [L3]
    Lucas, É., Sur les suites de Farey, Bull. Soc. Math. France (1877–1878), 118–119.Google Scholar
  23. [M]
    Mahler, K., On a special functional equation, J. London Math. Soc. 15 (1940), 115–123. MR 2, 133e.MathSciNetCrossRefGoogle Scholar
  24. [R1]
    Reznick, B., Digital representations using the greatest integer function, Trans. Amer. Math. Soc. 312 (1989), 355–375. MR 89g:11010.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [R2]
    Reznick, B., Congruence properties of the Stem sequence, in preparation.Google Scholar
  26. [R3]
    Reznick, B., Stern measures, in preparation.Google Scholar
  27. [R4]
    de Rham, G., Un peu de mathématiques à propos d’une courbe plane, Elem. Mat. 2 (1947), 73–76, 89–97. MR 9–246.Google Scholar
  28. [R5]
    Rödseth, 0, Some arithmetical properties of m-ary partitions, Proc. Camb. Phil. Soc. 68 (1970), 447–453. MR 41#5319.zbMATHCrossRefGoogle Scholar
  29. [S1]
    Sloane, N. J. A., A Handbook of Integer Sequences, Academic Press, New York (1973). MR 50#9760.zbMATHGoogle Scholar
  30. [S2]
    Stanley, R. P. Private communication.Google Scholar
  31. [S3]
    Stern, M. A., Ueber eine zahlentheoretische funktion, J. fur Math. 55 (1858), 193–220.zbMATHGoogle Scholar
  32. [T1]
    Tanturri, A, Della partizione dei numeri. Ambi, terni quaterne e cinquine di data somma, Att. delle Sci. di Torino 52 (1916/7), 902–918.Google Scholar
  33. [T2]
    Tanturri, A, Sul numero delle partizioni d’un numero in potenze di 2, Att. delle Sci. di Torino 54 (1918), 97–110.Google Scholar
  34. [T3]
    Tanturri, A., Sul numero delle partizioni d’un numero in potenze di 2, Att. Accad. Naz. Lincei 27 (1918), 399–403.Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Bruce Reznick
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations