Lower Bounds for Least Quadratic Non-Residues

  • S. W. Graham
  • C. J. Ringrose
Part of the Progress in Mathematics book series (PM, volume 85)


Let p be a prime, and let n p denote the least positive integer n such that n is a quadratic non-residue mod p. In 1949, Fridlender [F] and Salié [Sa] independently showed that \( {n_p} = \Omega \left( {\log p} \right) \); in other words, there are infinitely many primes p such that \( {n_p} \geqslant c\log p \) for some absolute constant c. In 1971, Montgomery showed that if the Generalized Riemann Hypothesis is true, then
$$ {n_p} = \Omega \left( {\log p\log \log p} \right) $$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CGW]
    F.R.K. Chung, R.L. Graham, and R.M. Wilson. Quasi-random graphs, preprint.Google Scholar
  2. [C]
    J. G. van der Coiput, Verschärfung der Abschätzungen beim Teilerprob- lem, Math. Annalen 89 (1922), 39–65.Google Scholar
  3. [D]
    H. Davenport, Multiplicative Number Theory (2nd edition, revised by H.L. Montgomery), GTM 74, Springer-Verlag, Berlin- Heidelberg-New York, 1980.Google Scholar
  4. [F]
    V.R. Fridlender, On the least n-th power non-residue, Dokl. Akad. Nauk SSSR 66 (1949), 351–352.MathSciNetMATHGoogle Scholar
  5. [G1]
    S. W. Graham, An asymptotic formula related to the Selberg sieve, J. Number Theory 10 (1978), 83–94.MathSciNetMATHCrossRefGoogle Scholar
  6. [G2]
    S. W. Graham, On Linnik’s constant, Acta Arith. 39 (1980), 163–179.Google Scholar
  7. [H-R]
    H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.MATHGoogle Scholar
  8. [He]
    D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 148–170.MathSciNetCrossRefGoogle Scholar
  9. [Ho]
    C. Hooley, On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 60–79.MathSciNetMATHCrossRefGoogle Scholar
  10. [I]
    A. Ivic, The Riemann zeta-function, Wiley-Interscience, New York, 1985.MATHGoogle Scholar
  11. [J]
    M. Jutila, On Linnik’s Constant, Math. Scand. 41 (1977), 45–62.MathSciNetMATHGoogle Scholar
  12. [Ma]
    H. Maier, Chains of large gaps between consecutive primes, Adv. in Math. 39 (3) (1981), 257–269.MathSciNetMATHCrossRefGoogle Scholar
  13. [Mo]
    H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer-Verlag, New York, 1971.CrossRefGoogle Scholar
  14. [R]
    C. Ringrose, The q-analogue of van der Corput’s method, Thesis, University of Oxford, Oxford, 1985.Google Scholar
  15. [Sa]
    H. Salié, Uber den kleinsten positiven quadratischen Nichtrest nach einer Primzahl, Math. Nachr. 3 (1949), 7–8.MathSciNetCrossRefGoogle Scholar
  16. [Sc]
    W. Schmidt, Equations over finite fields: an elementary approach, Lec-ture Notes in Math. 536, Springer-Verlag, New York, 1976.Google Scholar
  17. [Sr]
    B. R. Srinivasan, The lattice point problem of many-dimensional hyper- boloids II, Acta Arith. 8 (1963) 173–204.MathSciNetGoogle Scholar
  18. [T]
    E. C. Titchmarsh, The theory of the Riemann zeta-function, (2nd edition, revised by D.R. Heath-Brown) Clarendon Press, Oxford, 1986.Google Scholar
  19. [W]
    A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948) 204–207.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • S. W. Graham
    • 1
  • C. J. Ringrose
    • 2
  1. 1.Department of MathematicsMichigan Technological UniversityHoughtonUSA
  2. 2.LeedsEngland

Personalised recommendations