Advertisement

Ribosomal RNA Genes of the Anopheles gambiae Species Complex

  • Frank H. Collins
  • Susan M. Paskewitz
  • Victoria Finnerty
Part of the Advances in Disease Vector Research book series (VECTOR, volume 6)

Abstract

The Anopheles gambiae complex is a group of six sibling species of Afro-tropical anophelines. The two most widely distributed species Anopheles gambiae and An. arabiensis are among the principal vectors of malaria in Africa. An. melas, An. merus, and An. bwambae, are vectors of limited regional importance, whereas the highly zoophilic An. Quadri-annulatus is not believed to contribute significantly to the transmission of malaria (25, 63, 71, 72). Although some species-specific differences have been described in the distributions of morphometric criteria (15, 20), no morphological taxonomic characters have been observed that permit the unequivocal identification of the species of individual adult or larval specimens. Because the habitats of these six species overlap considerably, both on geographical and ecological scales, two or more members of the complex are often present in the same adult or larval collections.

Keywords

Anopheles Gambiae Paracentric Inversion Gambiae Complex rDNA Unit External Transcribe Spacer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, M.L., Shaw, D.D., and Contreras, N., 1987, Ribosomal RNA- encoding DNA introgression across a narrow hybrid zone between two subspecies of grasshopper, Proc. Natl. Acad. Sci. USA 84:3946–3950.PubMedCrossRefGoogle Scholar
  2. 2.
    Barnett, T., and Rae, P.M.M., 1979, A 9.6-kb intervening sequence in D. virilis rDNA, and sequence homology in rDNA interruptions of diverse species of Drosophila and other Diptera, Cell 16:763–775.PubMedCrossRefGoogle Scholar
  3. 3.
    Beckingham, K., 1982, Insect rDNA, in Busch, H., and Rothblum, L. (eds.): The Cell Nucleus, X, New York: Academic Press, pp. 205–269.Google Scholar
  4. 4.
    Beckingham, K., and Rubacha, A., 1984, Different chromatin states of the intron- and type 1 intron+ rRNA genes of Calliphora erythrocephala, Chromosoma 90:311–316.PubMedCrossRefGoogle Scholar
  5. 5.
    Beckingham, K., and Thompson, N., 1982, Under-replication of intron+ rDNA cistrons in polyploid nurse cell nuclei of Calliphora erythrocephala, Chromosoma 87:177–196.CrossRefGoogle Scholar
  6. 6.
    Beckingham, K., and White, R., 1980, The ribosomal DNA of Calliphora erythrocephala: An analysis of hybrid plasmids containing ribosomal DNA, J. Molec. Biol 137:349–373.PubMedCrossRefGoogle Scholar
  7. 7.
    Bryan, J., 1979, Observations on the member species of the Anopheles gambiae complex in The Gambia, West Africa, Trans. Royal Soc. Trop. Med. Hyg. 73:463–466.CrossRefGoogle Scholar
  8. 8.
    Bryan, J.H., DiDeco, M.A., Petrarca, V., and Coluzzi, M., 1982, Inversion polymorphism and incipient speciation in Anopheles gambiae s.str. in The Gambia, West Africa, Genetica 59:167–176.CrossRefGoogle Scholar
  9. 9.
    Burke, W.D., Calalang, C.C., and Eickbush, T.H., 1987, The site-specific ribosomal insertion element Type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme, Mol. Cell Biol. 7:2221–2230.PubMedGoogle Scholar
  10. 10.
    Carlson, D.A., and Service, M.W., 1980, Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components, Science 207:1089–1091.CrossRefGoogle Scholar
  11. 11.
    Chooi, W.Y., and Lieby, K.R., 1984, Electron microscopic evidence for RNA polymerase loading at repeated sequences in non-transcribed spacers of D. virilis, Exp. Cell Res. 154:181–190.CrossRefGoogle Scholar
  12. 12.
    Cluster, P.D., Marinkovic, D., Allard, R.W., and Ayala, F.J., 1987, Correlations between development rates, enzyme activities, ribosomal DNA spacer-length phenotypes, and adaptation in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 84:610–614.PubMedCrossRefGoogle Scholar
  13. 13.
    Coen, E.S., and Dover, G.A., 1983, Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster, Cell 33:849–855.PubMedCrossRefGoogle Scholar
  14. 14.
    Coen, E.S., Thoday, J.M., and Dover, G.A., 1982, Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster, Nature 295:564–568.PubMedCrossRefGoogle Scholar
  15. 15.
    Coetzee, M., Newberry, K., and Durand, D., 1982, A preliminary report on a morphological character distinguishing important malaria vectors in the Anopheles gambiae complex in southern Africa, Mosq. Syst. 14:88–93.Google Scholar
  16. 16.
    Collins, F.H., Finnerty, V., and Petrarca, V., 1989, Ribosomal DNA-probes differentiate five cryptic species in the Anopheles gambiae complex, Parassitologia: in press.Google Scholar
  17. 17.
    Collins, F.H., Mehaffey, P.C., Rasmussen, M.O., Brandling-Bennett, A.D., and Finnerty, V., 1988, Comparison of DNA probe and isoenzyme methods for differentiating Anopheles gambiae and Anopheles arabiensis, J. Med. Entomol. 25:116–120.PubMedGoogle Scholar
  18. 18.
    Collins, F.H., Mendez, M.A., Rasmussen, M.O., Mehaffey, P.C., Besansky, N.J., and Finnerty, V., 1987, A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex, Am. J. Trop. Med. Hyg. 37:37–41.PubMedGoogle Scholar
  19. 19.
    Collins, F.H., Petrarca, V., Mpofu, S., Brandling-Bennett, A.D., Were, J.B.O., Rasmussen, M.O., and Finnerty, V., 1988, Comparison of DNA probe and cytogenetic methods for identifying field collected Anopheles gambiae complex mosquitoes, Am. J. Trop. Med. Hyg. 39:545–550.PubMedGoogle Scholar
  20. 20.
    Coluzzi, M., 1964, Morphological divergences in the Anopheles gambiae complex, Riv. di Malariol. 43:197–232.Google Scholar
  21. 21.
    Coluzzi, M., 1968, Chromosomi politenici delle cellule nutrici ovariche nel complesso gambiae del genera Anopheles, Parassitologia 10:179–183.Google Scholar
  22. 22.
    Coluzzi, M., 1984, Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control, WHO Bull. 62 (Suppl.):107–113.Google Scholar
  23. 23.
    Coluzzi, M., Petrarca, V., and DiDeco, M.A., 1985, Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae, Boll. Zool. 52:45–63.Google Scholar
  24. 24.
    Coluzzi, M., and Sabatini, A., 1967, Cytogenetic observations on species A and B of the Anopheles gambiae complex, Parassitologia 9:73–88.Google Scholar
  25. 25.
    Coluzzi, M., Sabatini, A., Petrarca, V., and DiDeco, M.A., 1979, Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex, Trans. Royal Soc. Trop. Med. Hyg. 73:483–497.CrossRefGoogle Scholar
  26. 26.
    Cross, N.C.P., and Dover, G.A., 1987a, Tsetse fly rDNA: An analysis of structure and sequence, Nucl. Acids Res. 15:15–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Cross, N.C.P., and Dover, G.A., 1987b, A novel arrangement of sequence elements surrounding the rDNA promoter and its spacer duplications in tsetse species, J. Mol. Biol. 195:63–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Davidson, G., 1962, Anopheles gambiae complex, Nature 196:907.CrossRefGoogle Scholar
  29. 29.
    Davidson, G., 1964, The five mating types in the Anopheles gambiae complex, Riv. di Malariol. 43:167–183.Google Scholar
  30. 30.
    Davidson, G., Paterson, H.E., Coluzzi, M., Mason, G.F., and Micks, D.W., 1967, The Anopheles gambiae complex, in Wright, J.W., and Pal, R. (eds): Genetics of Insect Vectors of Disease, Elsevier, Amsterdam, New York, pp. 211–250.Google Scholar
  31. 31.
    Davidson, G., and White, G.B., 1972, The crossing characteristics of a new, sixth species in the Anopheles gambiae complex, Trans. Royal Soc. Trop. Med. Hyg. 66:531–532.Google Scholar
  32. 32.
    Dawid, I.B., DiNocera, P.P., and Mandal, R.K., 1984, Ribosomal RNA genes and transposable sequences in Drosophila melanogaster, Genetics: New Frontiers, pp. 235–245.Google Scholar
  33. 33.
    Degelmann, A., Royer, H.-D., Hollenberg, C.P., 1979, The organization of the ribosomal genes of Chironomus tentans and some closely related species, Chromosoma 71:263–281.PubMedCrossRefGoogle Scholar
  34. 34.
    Dover, G.A., 1982, Molecular drive: A cohesive mode of species evolution, Nature 299:111–117.PubMedCrossRefGoogle Scholar
  35. 35.
    Dover, G., and Coen, E., 1981, Spring cleaning ribosomal DNA: A model for multigene evolution, Nature 290:731–732.PubMedCrossRefGoogle Scholar
  36. 36.
    Eickbush, T.H., and Robins, B., 1985, Bombyx mori 28S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster, EMBO J. 4:2281–2285.PubMedGoogle Scholar
  37. 37.
    Finnerty, V., Mendez, M.A., Rasmussen, M.O., Berrios, S.I., and Collins, F.H., Intervening sequences in the 28S ribosomal DNA of member species of the Anopheles gambiae mosquito complex, manuscript.Google Scholar
  38. 38.
    Frischauf, A.M., Lehrach, H., Poustka, A., and Murray, N., 1983, Lambda replacement vectors carrying polylinker sequences, J. Molec. Biol. 170:827–842.PubMedCrossRefGoogle Scholar
  39. 39.
    Fujiwara, H., Ishikawa, H., 1986, Molecular mechanisms of introduction of the hidden break into the 28S rRNA of insects: Implication based on structural studies, Nucl. Acids Res. 14:6393–6401.PubMedCrossRefGoogle Scholar
  40. 40.
    Gale, K.R., and Crampton, J.M., 1987a, DNA probes for species identification of mosquitoes in the Anopheles gambiae complex, Med. Vet. Entomol. 1:127–236.PubMedCrossRefGoogle Scholar
  41. 41.
    Gale, K.R., and Crampton, J.M., 1987b, A DNA probe to distinguish the species Anopheles quadriannulatus from other species of the Anopheles gambiae complex, Trans. Royal Soc. Trop. Med. Hyg. 81:842–846.CrossRefGoogle Scholar
  42. 42.
    Gale, K.R., and Crampton, J.M., 1988, Use of a male-specific DNA probe to distinguish female mosquitoes of the Anopheles gambiae species complex, Med. Vet. Entomol. 2:77–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Gatti, M., Bonaccorsi, S., Pimpinelli, S., and Coluzzi, M., 1982, Polymorphism of sex chromosome heterochromatin in the Anopheles gambiae complex, in Steiner, W.W.M., Tabachnick, W.J., Rai, K.S., and Narang, S. (eds): Recent Developments in the Genetics of Insect Disease Vectors, Stipes, Champaign, Illinois, pp. 32–48.Google Scholar
  44. Gerbi, S.A., 1985, Evolution of ribosomal DNA, MacIntyre, R. (ed): in Molecular Evolutionary Genetics, Plenum Press, New York, pp. 419–517.Google Scholar
  45. 45.
    Gillings, M.R., Frankham, R., Speirs, J., and Whalley, M., 1987, X-Y exchange and the coevolution of the X and Y rDNA arrays in Drosophila melanogaster, Genetics 116:241–251.PubMedGoogle Scholar
  46. 46.
    Gray, M.W., Sankoff, D., and Cedergren, R.J., 1984. On the evolutionary descent of organisms and organelles: A global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA, Nucl. Acids Res. 12:5837–5852.PubMedCrossRefGoogle Scholar
  47. 47.
    Hunt, R.H., and Coetzee, M., 1986, Chromosomal and electrophoretic identification of a sample of Anopheles gambiae group (Diptera: Culicidae) from the island of Grand Comoros, Indian Ocean, J. Med. Entomol. 23:655–660.PubMedGoogle Scholar
  48. 48.
    Israelewski, N., and Schmidt, E.R., 1982, Spacer size heterogeneity in ribosomal DNA of Chironomus thummi is due to a 120-bp repeat homologous to a predominantly centromeric repeated sequence, Nucl. Acids Res. 10:7689–7700.PubMedCrossRefGoogle Scholar
  49. 49.
    Kohorn, B.D., and Rae, P.M.M., 1983, Localization of DNA sequences promoting RNA polymerase I activity in Drosophila, Proc. Natl. Acad. Sci. USA 80:3265–3268.PubMedCrossRefGoogle Scholar
  50. 50.
    Marchand, R.P., and Mnzava, A.E.P., 1985, A field test of a biochemical key to identify members of the An. gambiae group of species in northeast Tanzania, J. Trop. Med. Hyg. 88:205–210.PubMedGoogle Scholar
  51. 51.
    McLain, D.K., and Collins, F.H., 1989, Structure of the rDNA cistron in the mosquito Anopheles gambiae and rDNA sequence variation within and between species of the An. gambiae complex, Heredity 62:233–242.PubMedCrossRefGoogle Scholar
  52. 52.
    McLain, D.K., Collins, F.H., Brandling-Bennett, A.D., and Were, J.B.O., 1989, Microgeographic variation in rDNA intergenic spacers of Anopheles gambiae in western Kenya, Heredity 62:257–264.PubMedCrossRefGoogle Scholar
  53. 53.
    McLain, D.K., Rai, K.S., and Fraser, M.J., 1987, Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA in mosquitoes of the Aides albopictus subgroup, Heredity 58:373–381.PubMedCrossRefGoogle Scholar
  54. 54.
    Miles, S.J., 1979, A biochemical key to adult members of the Anopheles gambiae group of species (Diptera: Culicidae), J. Med. Entomol. 15:297–299.PubMedGoogle Scholar
  55. 55.
    Mnzava, A.E.P., and Kilama, W.L., 1986, Observations on the distribution of the Anopheles gambiae complex in Tanzania, Acta Trop. 43:277–282.PubMedGoogle Scholar
  56. 56.
    Onori, E., and Muir, D., 1984, Malaria Vector Species Complexes and Intraspecific Variations: Relevance for Malaria Control and Orientation for Future Research, UNDP/World Bank/WHO, Geneva, 102 p.Google Scholar
  57. 57.
    Panyim, S., Yasophornsrikul, S., Tungpradabkul, S., Baimai, V., Rosenberg, R., Andre, R.G., and Green, C.A., 1988, Identification of isomorphic malaria vectors using a DNA probe, Am. J. Trop. Med. Hyg. 38:47–49.PubMedGoogle Scholar
  58. 58.
    Post, R.J., 1985, DNA probes for vector identification, Parasitol. Today 1:89–90.Google Scholar
  59. 59.
    Post, R.J., and Crampton, J.M., 1987, Probing the unknown. Parasitol. Today 3:380–383.CrossRefGoogle Scholar
  60. 60.
    Renkawitz, R., Gerbi, S.A., and Glatzer, K.H., 1979, Ribosomal DNA of the fly Sciara coprophila has a very small and homogeneous repeat unit, J. Mol. Gen. Genet. 173:1–13.CrossRefGoogle Scholar
  61. 61.
    Roiha, H., Miller, J.R., Woods, L.C., and Glover, D.M., 1981, Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster, Nature 290:749–753.PubMedCrossRefGoogle Scholar
  62. 62.
    Schmidt, E.R., Godwin, E.A., Keyl, H-G., and Israelewski, N., 1982, Cloning and analysis of ribosomal DNA of Chironomus thummi piger and Chironomus thummi thummi, Chromosoma 87:389–407.PubMedCrossRefGoogle Scholar
  63. Service, M.W., 1985, Anopheles gambiae: Africa’s principal malaria vector, 1902–1984, ESA Bull. (Fall):8–12.Google Scholar
  64. 64.
    Smith, V.L., and Beckingham, K., 1984, The intron boundaries and flanking rRNA coding sequences of Calliphora erythrocephala rDNA, Nucl. Acids Res. 12:1707–1724.PubMedCrossRefGoogle Scholar
  65. 65.
    Sogin, M.L., Elwood, H.J., and Gunderson, J.H., 1986, Evolutionary diversity of eukaryotic small subunit rRND genes, Proc. Natl. Acad. Sci. USA 83:1383–1287.PubMedCrossRefGoogle Scholar
  66. 66.
    Sollner-Webb, B., and Tower, J., 1986, Transcription of cloned eukaryotic ribosomal RNA genes, Ann. Rev. Biochem. 55:801–830.PubMedCrossRefGoogle Scholar
  67. 67.
    Tautz, D., and Dover, G.A., 1986, Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point, EMBO J. 5:1267–1273.PubMedGoogle Scholar
  68. 68.
    Tautz, D., Tautz, C., Webb, D., and Dover, G.A., 1987, Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species: Implications for molecular coevolution in multigene families, Mol. Biol. 195:525–542.CrossRefGoogle Scholar
  69. 69.
    White, G.B., 1970, Chromosomal evidence for natural interspecific hybridization by mosquitoes of the Anopheles gambiae complex, Nature 231:184–185.CrossRefGoogle Scholar
  70. 70.
    White, G.B., 1973, Comparative studies on sibling species of the Anopheles gambiae Giles complex (Diptera: Culicidae). III. The distribution, ecology, behavior and vectorial importance of species D in Bwamba County, Uganda, with an analysis of biological, ecological, morphological and cytogenetical relationships of Ugandan species D, Bull. Entomol. Res. 63:65–97.CrossRefGoogle Scholar
  71. 71.
    White, G.B., 1974, Anopheles gambiae complex and disease and transmission in Africa, Trans. Royal Soc. Trop. Med. Hyg. 68:278–301.CrossRefGoogle Scholar
  72. 72.
    White, G.B., 1985, Anopheles bwambae sp.n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An. gambiae complex (Diptera: Culicidae), Syst. Entomol. 10:501–522.CrossRefGoogle Scholar
  73. 73.
    Williams, S.M., DeSalle, R., and Strobeck, C., 1985, Homogenization of geographical variants at the nontranscribed spacer of rDNA in Drosophila mercatorum, Mol. Biol. Evol. 2:338–346.PubMedGoogle Scholar
  74. 74.
    Williams, S.M., Furnier, G.R., Fuog, E., and Strobeck, C., 1987, Evolution of the ribosomal DNA spacers of Drosophila melanogaster: Different patterns of variation on X and Y chromosomes, Genetics 116:225–232.PubMedGoogle Scholar
  75. 75.
    Woese, C.R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  76. 76.
    Xiong, Y., and Eickbush, T.H., 1988, The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons, Mol. Cell Biol. 8:114–123.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Frank H. Collins
    • 1
  • Susan M. Paskewitz
    • 1
  • Victoria Finnerty
    • 2
  1. 1.Center for Infectious Diseases, Centers for Disease ControlMalaria Branch, Division of Parasitic DiseasesAtlantaUSA
  2. 2.Department of BiologyEmory UniversityAtlantaUSA

Personalised recommendations