The Biology of Spinal Fusion

  • George F. Muschler
  • Joseph M. Lane
  • Edgar G. Dawson

Abstract

This chapter is devoted to the discussion of the biology and biological principles of spinal fusion. Successful fusion is a critical element in the successful treatment in a large percentage of patients undergoing spinal surgery.1–7 Failed spinal fusions result in significant morbidity of spinal surgery patients. The incidence of pseudarthrosis ranges from 5% to 34% in large series,3,7,8 although generally lower in fusions for idiopathic scoliosis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burton CV. The role of spine fusion—Question 4. Spine 1981;6:29.Google Scholar
  2. 2.
    Burton CV. Causes of failure of surgery on the lumbar spine. Clin Orthop Rel Res 1981;157:191.Google Scholar
  3. 3.
    Eie N, Solgaard T, Kleppe H. The knee-elbow position in lumbar disc surgery: a review of complications. Spine 1983;8:897.PubMedGoogle Scholar
  4. 4.
    Farger CA, Freidberg SR. Analysis of failures and poor results of lumbar spine surgery. Spine 1980;5:87.Google Scholar
  5. 5.
    Frymoyer JW. The role of spinal fusion—question 3. Spine 1981;6:284.Google Scholar
  6. 6.
    Heithoff KB, Burton CV. CT evaluation of the failed back syndrome. Orthop Clin North Am 1985;16:417.PubMedGoogle Scholar
  7. 7.
    Lehman TR, LaRocca HS. Repeat lumbar surgery—a review of patients with failure from previous lumbar surgery treated by spinal canal exploration and lumbar spinal fusion. Spine 1981;6(6):615.Google Scholar
  8. 8.
    DePalma AF. The nature of pseudarthrosis. Clin Orthop 1968;59:113.Google Scholar
  9. 9.
    Burwell RG. The fate of bone grafts. In: Apley AG, ed. Recent advances in orthopaedics. London: Churchill, 1969:115.Google Scholar
  10. 10.
    Cruess RL. Healing of bone tendon and ligament. In: Rockwood CA, Green DP, eds. Fractures. Philadelphia: Lippincott, 1984:153.Google Scholar
  11. 11.
    Nilsson OS, Bauer HCF, Brosjo O, Tornkvist H. Influence of indomethicin on heterotopic bone formation in rats. Importance of length of treatment and of age. Clin Orthop 1986;207:239.PubMedGoogle Scholar
  12. 12.
    Coventry MB, Scanion PW. The use of radiation to discourage ectopic bone: a nine-year study in surgery about the hip. J Bone Joint Surg [Am] 1981;63:201.Google Scholar
  13. 13.
    Freidenstein AJ. Determined and inducible osteogenic precursor cells. In: Sognaes R, Vaughan J, eds. Hard tissue growth, repair, and remineralization. Ciba Foundation Symposium II, New York: Elsevier, 1973:169.Google Scholar
  14. 14.
    Freidenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327.Google Scholar
  15. 15.
    Freidenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the haemopoietic tissues. Transplantation 1974;17:331.Google Scholar
  16. 16.
    Freidenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and haemopoietic tissues. Transplantation 1968;6:230.Google Scholar
  17. 17.
    Urist MR. Bone and bone transplants. In: Urist MR, ed. Fundamental and clinical physiology of bone. Philadelphia: Lippincott, 1980:131.Google Scholar
  18. 18.
    Goldstein LA. Surgical management of scoliosis. J Bone Joint Surg 1966;48A:167.Google Scholar
  19. 19.
    Hibbs RA. An operation for progressive spinal deformities. NY State J Med 1911;93:1013.Google Scholar
  20. 20.
    Moe JH. Methods of correction and surgical technique in scoliosis. Orthop Clin North Am 1972;2:17.Google Scholar
  21. 21.
    Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical fusions. Clin Orthop 1976;119:231.PubMedGoogle Scholar
  22. 22.
    Curtis BH. Orthopaedic management of muscular dystrophy and related disorders. American Academy of Orthopaedic Surgeons Instructional Course Lecture, Vol. 19, St. Louis: Mosby, 1970:78.Google Scholar
  23. 23.
    Allen BL, Ferguson RL. The operative treatment of myelomeningocele spinal deformity-1979. Orthop Clin North Am 1979; 10:845.PubMedGoogle Scholar
  24. 24.
    Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop 1985;200:322.PubMedGoogle Scholar
  25. 25.
    Espersen JO, Buhl M, Eriksen EF, et al. Treatment of cervical disc disease using Cloward’s technique. I. General results, effect of different operative methods and complications in 1,106 patients. Acta Neurochir (Wien) 1984;70(1–2):97.Google Scholar
  26. 26.
    Takeda M. Experience in posterior lumbar interbody fusion: unicortical versus bicortical autogenous grafts. Clin Orthop 1985;193:120.PubMedGoogle Scholar
  27. 27.
    Weiland AJ, Moore JR, Daniel RK. Vascularized bone autografts: experience with 41 cases. Clin Orthop 1983;174:87.PubMedGoogle Scholar
  28. 28.
    Dell PC, Burchardt H, Glowczewskie FP. A roentgenographs, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg 1985;67A:105.Google Scholar
  29. 29.
    Shaffer JW, Fields GA, Goldberg VM, Davy DT. Fate of vascularized and non-vascularized autografts. Clin Orthop 1985;197:32.PubMedGoogle Scholar
  30. 30.
    Weiland AJ, Phillips TW, Randolph MA. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg 1984;74:368.PubMedGoogle Scholar
  31. 31.
    Hubbard LF, Herndon JH, Buonanno AR. Free vascularized fibula transfer for stabilization of the thoracolumbar spine. A case report. Spine 1985;10:89.Google Scholar
  32. 32.
    Hartman JT, McCarron RF, Robertson WW. A pedicle bone grafting procedure for failed lumbosacral spinal fusion. Clin Orthop 1983;178:223.PubMedGoogle Scholar
  33. 33.
    McBride GG, Bradford DS. Vertebral body replacement with femoral neck allograft and vascularized rib strut graft. A technique for treating post-traumatic kyphosis with neurologic deficit. Spine 1983;8(4):406.PubMedGoogle Scholar
  34. 34.
    Rose GK, Owen R, Sanderson JM. Transposition of rib with blood supply for the stabilization of spinal kyphosis. J Bone Joint Surg 1975;57B:112.Google Scholar
  35. 35.
    Bradford DS. Anterior vascular pedicle bone grafting for the treatment of kyphosis. Spine 1980;5:318.PubMedGoogle Scholar
  36. 36.
    Goujon E. Recherches experimentales sur les proprietes physiologiques de la moelle des os. Journal de F Anatomie et de Physiologie Normales et Pathologiques de l’Homme et des Animaux 1869;6:399.Google Scholar
  37. 37.
    Senn N. On the healing of aseptic cavities by implantation of antiseptic decalcified bone. Am J Med Sci 1889;98:219.Google Scholar
  38. 38.
    Pfeiffer CA. Development of bone from transplanted marrow in mice. Anat Rec 1948;102:225.PubMedGoogle Scholar
  39. 39.
    Burwell RC. Studies on the transplantation of bone. VII. The fresh composite homo-autograft of cancellous bone. An analysis of factors leading to osteogenesis in marrow transplants and in marrow containing bone grafts. J Bone Joint Surg 1964;46B(1):110.Google Scholar
  40. 40.
    Burwell RC. The function of bone marrow in the incorporation of a bone graft. Clin Orthop 1985;200:125.PubMedGoogle Scholar
  41. 41.
    Freidenstein AJ, Chailakjan RK, Lalykina KS. The development of fibroblast colonies in monolayer culture of guineapig bone marrow and spleen cells. Cell Tissue Kinet 1979;3:393.Google Scholar
  42. 42.
    Urist MR. Bone: formation by auto induction. Science 1965;150:893.PubMedGoogle Scholar
  43. 43.
    Urist MR. Surface-decalcified allogeneic bone (SDAB) implants. Clin Orthop 1968;56:37.PubMedGoogle Scholar
  44. 44.
    Urist MR. New bone formation induced in post fetal life by bone morphogenetic protein. In: Becker RD, ed. Mechanisms of growth control. Springfield: Thomas, 1981:406.Google Scholar
  45. 45.
    Urist MR, Hay PH, Dubuc F, et al. Osteogenic competence. Clin Orthop 1969;64:194.PubMedGoogle Scholar
  46. 46.
    Urist MR, Iwata H, Cecotti PL, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA 1973;70:3571.Google Scholar
  47. 47.
    Urist MR, Huo YK, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA 1984;82:371.Google Scholar
  48. 48.
    Urist MR, Lietze A, Dawson E, et al. Beta-tricalcium phosphate delivery system of bone morphogenetic protein. Clin Orthop 1984;187:277.PubMedGoogle Scholar
  49. 49.
    Urist MR, Lietz A, Mizutani H, et al. Bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop 1982;162:219.PubMedGoogle Scholar
  50. 50.
    Urist MR, Mikulski A, Lietz A. Solubilized and insolu-bilized bone morphogenetic protein. Proc Natl Acad Sci USA 1979;76:1828.PubMedGoogle Scholar
  51. 51.
    Urist MR, Nakagawa M, Nakata, et al. Experimental myositis ossificans. Arch Pathol Lab Med 1978;102:312.PubMedGoogle Scholar
  52. 52.
    Urist MR, Nogami H. Morphogenetic substratum for differentiation of cartilage in tissue culture. Nature (London) 1970;225:1051.Google Scholar
  53. 53.
    Urist MR, Silverman BF, Buring K, et al. The bone induction principle. Clin Orthop 1967;53:243.PubMedGoogle Scholar
  54. 54.
    Nogami M, Urist MR. Substrate prepared from bone matrix for chondrogenesis in tissue culture. J Cell Biol 1974;62:510.PubMedGoogle Scholar
  55. 55.
    Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop 1985;197:301.PubMedGoogle Scholar
  56. 56.
    Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of femoral massive diaphyseal defects. Clin Orthop 1982;171:225.Google Scholar
  57. 57.
    Van de Putte, KA, Urist MR. Osteogenesis in the interior of intramuscular implants of decalcified bone matrix. Clin Orthop 1966;43:257.Google Scholar
  58. 58.
    Lakasi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in the repair of skull defects. Ann Surg 1982;196:100.Google Scholar
  59. 59.
    Nilsson OS, Urist MR, Dawson T, et al. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg 1986;68B:635.Google Scholar
  60. 60.
    Owen M. The origin of bone cells in the post natal organism. Arthritis Rheum 1980;23:1074.Google Scholar
  61. 61.
    Reddi AH. Bone matrix in the solid state—geometric influence on the differentiation of fibroblasts. In: Lawrence JH, Gotman JW, eds. Advances in biological and medical physics, Vol. 15. New York: Academic Press, 1973:1.Google Scholar
  62. 62.
    Reddi AH. Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1981;1:209.PubMedGoogle Scholar
  63. 63.
    Reddi AH. Extracellular matrix and development. In: Piez KA, Reddi AH, eds. Extracellular matrix biochemistry. New York: Elsevier, 1984:375.Google Scholar
  64. 64.
    Reddi AH. Extracellular matrix dependent local induction of cartilage and bone. J Rheumatol 1983;11:67.Google Scholar
  65. 65.
    Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification and hemopoieses. J Cell Biol 1976;69:557.PubMedGoogle Scholar
  66. 66.
    Reddi AH, Higgins CB. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 1972;69:1691.Google Scholar
  67. 67.
    Sampath TR, De Simone R, Reddi AH. Extracellular matrix derived growth factor. Exp Cell Res 1982;142:460.PubMedGoogle Scholar
  68. 68.
    Sampath TR, Reddi AH. Role of extracellular matrix components in cartilage and bone induction. UCLA Symposia on Molecular and Cellular Biology 1985;25:293.Google Scholar
  69. 69.
    Weiss RE, Reddi AH. Role of fibronectin in collagenous matrix-induced mesenchymal cell proliferation and differentiation in vivo. Exp Cell Res 1981;133:243.Google Scholar
  70. 70.
    Ashton BA, Allen TD, Howlet CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1980;151:294.PubMedGoogle Scholar
  71. 71.
    Werntz J, Lane JM, Piez, et al. The repair of segmental bone defects with collagen and marrow. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986:108.Google Scholar
  72. 72.
    Burwell RG. The function of bone marrow in the incorporation of a bone graft. Clin Orthop 1985;200:125.PubMedGoogle Scholar
  73. 73.
    Tomford WW, Starkweather RJ, Goldman Mh. A study of the incidence of infection in the use of banked allograft bone. J Bone Joint Surg 1981;63:244.PubMedGoogle Scholar
  74. 74.
    Friedlaender GE, Mankin HJ. Bone banking: current methods and suggested guidelines. In: Instructional course lectures, Vol. 30. The American Academy of Orthopaedic Surgeons. St. Louis: Mosby, 1981:36.Google Scholar
  75. 75.
    Bos GD, Goldberg VM, Zika JM, Hieple KG, Powell AE. Immune responses of rats to frozen bone allografts. J Bone Joint Surg 1983;65A:239.Google Scholar
  76. 76.
    Chalmers J. Transplantation immunity in bone homografting. J Bone Joint Surg 1959;41B(1):160.Google Scholar
  77. 77.
    Friedlaender GE, Strong DM, Sell KW. Studies on antigenicity of bone. I. Freeze-dried and deep frozen allografts in rabbits. J Bone Joint Surg 1976;58A:854.Google Scholar
  78. 78.
    Halloran PF, Lee EH, Ziv I, et al. Orthotopic bone transplantation in mice. II. Studies of the alloantibody response. Transplantation (Baltimore) 1979;27:420–426.Google Scholar
  79. 79.
    Langer F, Czitrom A, Pritzker KP, Gross AE. The immunogenicity of fresh and frozen allograft bone. J Bone Joint Surg 1975;57A:216.Google Scholar
  80. 80.
    Muscolo DL, Kawai S, Ray RD. Cellular and humoral immune response analysis of bone-allografted rats. J Bone Joint Surg 1976;58A:826.Google Scholar
  81. 81.
    Friedlaender GE, Strong DM, Sell KW. Studies of the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg 1984;66A:107.Google Scholar
  82. 82.
    Lee EH, Langer F, Halloran P, Gross AE, Ziv I. The immunology of osteochondral and massive allografts. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986;4:61.Google Scholar
  83. 83.
    Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone allografts. Clin Orthop 1983;174:54.PubMedGoogle Scholar
  84. 84.
    Stevenson S. The immune response to osteochondral allografts in dogs. J Bone Joint Surg 1987;69A:573.Google Scholar
  85. 85.
    Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg 1983;65A:89.Google Scholar
  86. 86.
    Stevenson S, Hohn RB, Templeton JW. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Am J Vet Res 1983;44:201.PubMedGoogle Scholar
  87. 87.
    Muscolo DL, Caletti E, Schajowicz F, Araujo ES, Makino A. Tissue typing in human massive allografts of frozen bone. J Bone Joint Surg 1987;69A:583.Google Scholar
  88. 88.
    Cornell CN, Lane JM, Nottebaert M, et al. The effect of ethylene oxide sterilization upon the bone inductive properties of demineralized bone matrix. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.Google Scholar
  89. 89.
    Urist MR, Dawson E. Intertransverse process fusion with the aid of chemosterilized autolyzed allogeneic (AAA) bone. Clin Orthop 1981;154:97.PubMedGoogle Scholar
  90. 90.
    Oikarinen J. Experimental spinal fusion with decalcified bone matrix and deep-frozen allogeneic bone in rabbits. Clin Orthop 1982;162:210.PubMedGoogle Scholar
  91. 91.
    Bowen JR, Angus PD, Huxster RR, MacEwen GD. Posterior spinal fusion without blood replacement in Jehovah’s Witnesses. Clin Orthop 1985;198:284.PubMedGoogle Scholar
  92. 92.
    Stabler CL, Eismont FJ, Brown MD, Green BA, et al. Failure of posterior cervical fusions using cadaveric bone graft in children. J Bone Joint Surg 1985;67A(3):371.Google Scholar
  93. 93.
    Collis JS. Total disc replacement: a modified posterior lumbar interbody fusion. Report of 750 cases. Clin Orthop 1985;193:64.PubMedGoogle Scholar
  94. 94.
    Aurori BF, Weierman RJ, Lowell HA, et al. Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin Orthop 1985;199:153.PubMedGoogle Scholar
  95. 95.
    McCarthy RE, Peek RD, Morrissy RT, Hough AJ. Allograft bone in spinal fusion for paralytic scoliosis. J Bone Joint Surg 1986;68A:370.Google Scholar
  96. 96.
    Malanin TI, Rosomoff HL, Sutton CH. Human cadaver femoral head homografts for anterior cervical spine fusions. Surg Neurol 1977;7:249.Google Scholar
  97. 97.
    Schneider JR, Bright RW. Anterior cervical fusion using preserved bone allografts. Transplant Proc 1976;8(Suppl 1):73.PubMedGoogle Scholar
  98. 98.
    Gepstein R, Nakamura K, Latta M, et al. Posterior spinal fusion with various types of bone grafts. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986;11:203.Google Scholar
  99. 99.
    Nasca RJ, Whelchel JD. Use of cyropreserved bone in spinal surgry. Spine 1987;12:222.PubMedGoogle Scholar
  100. 100.
    Siqueira EB, Kranzler LI. Cervical interbody fusion using calf bone. Surg Neurol 1982;18(1):37.PubMedGoogle Scholar
  101. 101.
    Salama R. Xenogeneic bone grafting in humans. Clin Orthop 1983;174:113.PubMedGoogle Scholar
  102. 102.
    DeBowes RM, Grant BD, Bagby GW, et al. Cervical vertebral interbody fusion on the horse: a comparative study of bovine xenografts and autografts supported by stainless steel baskets. Am J Vet Res 1984;45(1):191.Google Scholar
  103. 103.
    McMurray GN. The evaluation of Kiel bone in spinal fusions. J Bone Joint Surg 1982;64B(1):101.Google Scholar
  104. 104.
    Whitehill R, Wilhelm CE, Moskal, et al. Posterior strut fusions to enhance immediate postoperative cervical stability. Spine 1986;11:6.PubMedGoogle Scholar
  105. 105.
    Bradford DS. Instrumentation of the lumbar spine. An overview. Clin Orthop 1986;203:209.PubMedGoogle Scholar
  106. 106.
    Tuli SN, Singh AD. The osteoinductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg 1978;60B:116.Google Scholar
  107. 107.
    Harakas NK. Demineralized bone matrix-induced osteogenesis. Clin Orthop 1984;188:239.PubMedGoogle Scholar
  108. 108.
    Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. J Bone Joint Surg 1986;68A:1264.Google Scholar
  109. 109.
    Einhorn TA, Lane JM, Burstein AH, et al. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. J Bone Joint Surg 1984;66A:274.Google Scholar
  110. 110.
    Gepstein R, Weiss RE, Saba K, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. J Bone Joint Surg 1987;69A:984.Google Scholar
  111. 111.
    Lindholm TS, Nilsson OS, Lindholm TC. Extracellular and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells. Clin Orthop 1982;171:251.PubMedGoogle Scholar
  112. 112.
    Wittbjer J, Palmer B, Rohlin M, Thorngren KG. Osteogenic activity in composite grafts of demineralized compact bone and marrow. Clin Orthop 1983;173:229.PubMedGoogle Scholar
  113. 113.
    Muthukumaran N, Reddi AH. Bone matrix-induced local bone induction. Clin Orthop 1985;200:159.PubMedGoogle Scholar
  114. 114.
    Glowacki J, Kaban LB, Murray JE, et al. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet 1981;1:959.PubMedGoogle Scholar
  115. 115.
    Glowacki J, Altobelli D, Mulliken JB. Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int 1981;30:71.Google Scholar
  116. 116.
    Glowacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg 1985;12(2):233.PubMedGoogle Scholar
  117. 117.
    Mulliken JB, Glowacki J. Induced osteogenesis for the repair and reconstruction of the craniofacial region. Plast Reconstr Surg 1980;65:553.PubMedGoogle Scholar
  118. 118.
    Mulliken JB, Kaban LB, Glowacki J. Induced osteogenesis—the biologic principle and clinical applications. J Surg Res 1984;37:487.PubMedGoogle Scholar
  119. 119.
    Flatley TJ, Lynch KL, Benson MD. Tissue response to implants of calcium phosphate ceramic in rabbit spine. Clin Orthop 1983;179:246.PubMedGoogle Scholar
  120. 120.
    Ferraro JW. Experimental evaluation of ceramic calcium phosphate as a substitute for bone grafts. Plast Reconstr Surg 1979;63(5):634.PubMedGoogle Scholar
  121. 121.
    Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259.PubMedGoogle Scholar
  122. 122.
    Jarcho M, Kay JF, Gumaer KI, et al. Tissue cellular and subcellular events at bone-ceramic hydroxyapatite interface. J Bioeng 1977;1:79.PubMedGoogle Scholar
  123. 123.
    Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J Orthop Res 1987;5:114.PubMedGoogle Scholar
  124. 124.
    Rejda BV, Pellan JGJ, de Groot K. Tricalcium phosphate as a bone substitute. J Bioeng 1977;1:93.PubMedGoogle Scholar
  125. 125.
    Hoosendoorn HA, Renooji W, Akkermans LMA, et al. Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin Orthop 1984;187:281.Google Scholar
  126. 126.
    Cook SD, Reynolds MC, Whitecloud TS, et al. Evaluation of hydroxyapatite graft materials in canine cervical spine fusions. Spine 1986;11(4):305.PubMedGoogle Scholar
  127. 127.
    Waisbrod H, Gerbershagen HU. A pilot study of the value of ceramics for bone replacement. Arch Orthop Trauma Surg 1986;105(5):298.PubMedGoogle Scholar
  128. 128.
    Patka P. Bone replacement by calcium phosphate ceramics: an experimental study. Thesis, Univ. of Amsterman. Amsterdam: Free University Press, 1984.Google Scholar
  129. 129.
    Muschler GM, Lane JM, Werntz J, et al. The use of composite bone graft materials in a segmental femoral defect model in the rat. Inaugural Meeting of the International Society for Fracture Repair, Helsinki, September 2, 1987.Google Scholar
  130. 130.
    Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res 1987;5:356.PubMedGoogle Scholar
  131. 131.
    Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop 1985;193:246.PubMedGoogle Scholar
  132. 132.
    Canalis E The hormonal and local regulation of bone formation. 1983; Endocr Rev 42:62.Google Scholar
  133. 133.
    Urist ME, Delange RJ, Finerman GAM. Bone cell differentiation and growth factors. Science 1983;220:680.PubMedGoogle Scholar
  134. 134.
    Lindholm TS, Urist MR. A quantitative analysis of new bone formation by induction in composite graft of bone marrow and bone matrix. Clin Orthop 1956;150:288.Google Scholar
  135. 135.
    Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of massive femoral diaphyseal defects. Clin Orthop 1982;171:224.PubMedGoogle Scholar
  136. 136.
    Takagi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann Surg 1982;196:100.PubMedGoogle Scholar
  137. 137.
    Urist MR. Bone formation by auto-induction. Science 1965;150:893.PubMedGoogle Scholar
  138. 138.
    Urist MR, Granstein L, Nogami H, Swenson L, Murphy R. Transmembrane bone morphogenesis across multiple walled chambers. New evidence of a diffusible bone morphogenetic property. Arch Surg 1977;112:612.PubMedGoogle Scholar
  139. 139.
    Lovell T, Dawson EG. BMP augmentation of experimental spinal fusion. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.Google Scholar
  140. 140.
    Dickhaut S, DeLee JC, Page CP. Nutritional status: importance in predicting wound-healing after amputation. J Bone Joint Surg 1984;66A:71.Google Scholar
  141. 141.
    Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures. J Bone Joint Surg 1986;68A:1389.Google Scholar
  142. 142.
    Jensen JE, Jensen TG, Smith TK, et al. Nutrition in orthopaedic surgery. J Bone Joint Surg 1982;64A(9):1263.Google Scholar
  143. 143.
    Nilsson OS, Bauer HCF, Brostrom L-A. Methotrexate effects on heterotopic bone in rats. Acta Orthop Scand 1987;58:47.PubMedGoogle Scholar
  144. 144.
    Conaty JP, Mongan JL. Cervical fusion in rheumatoid arthritis. J Bone Joint Surg 1981;63A(8):1218.Google Scholar
  145. 145.
    Bryan WJ, Inglis AE, Sculco TP, Ranawat CS. Methylme-thacrylate stabilization for enhancement of posterior cervical arthrodesis in rheumatoid arthritis. J Bone Joint Surg 1982;64A:1045.Google Scholar
  146. 146.
    Clark CR, Keggi KJ, Panjabi MM. Methylmethacrylate stabilization of the cervical spine. J Bone Joint Surg 1984;66A(1):40.Google Scholar
  147. 147.
    Koskinen EVS. The effect of growth hormone and thyrotropin on human fracture healing. Acta Orthop Scand (Suppl) 1963;62:7.Google Scholar
  148. 148.
    Udupa KN, Gupta LP. The effect of growth hormone and thyroxine in healing of fracture. Indian J Med Res 1965;53:623.PubMedGoogle Scholar
  149. 149.
    Koskinen EVS. The influence of hormonal treatment and orchiectomy, oophorectomy, and thyroidectomy on experimental fractures. Acta Orthop Scand (Suppl) 1965;80:7.Google Scholar
  150. 150.
    Barth R, McDonnell J, Muschler GF, Zimmerman P, Lane JM. The effect of thyroid hormone on bone healing in a segmental defect model. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.Google Scholar
  151. 151.
    Aprin H, Bowen JR, MacEwen GD, Hall JE. Spinal fusion in patients with spinal muscular atrophy. J Bone Joint Surg 1982;64A:1179.Google Scholar
  152. 152.
    Swank S, Brown JC, Perry RE. Spinal fusion in Duchennes muscular dystrophy. Spine 1982;7:484.PubMedGoogle Scholar
  153. 153.
    Bunch WH. Muscular dystrophy. In: Hardy JH, ed. Spinal deformity in neurological and muscular disorders. St. Louis: Mosby, 1974:92.Google Scholar
  154. 154.
    Bassett CAL, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg 1981;63A:511.Google Scholar
  155. 155.
    Paterson D. Treatment of nonunion with constant direct current: a totally implantable system. Orthop Clin North Am 1984;15:47.PubMedGoogle Scholar
  156. 156.
    Bassett CAL, Mitchell SN, Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 1982;247:263.Google Scholar
  157. 157.
    Bassett CAL. The development and application of pulsed electromagnetic fields (PEMF’s) for ununited fractures and arthrodeses. Orthop Clin North Am 1984;15:61.PubMedGoogle Scholar
  158. 158.
    Bassett CA, Pilla AA, Pawluk RJ. A non-operative salvage of surgically resistant pseudarthrosis and non-union by pulsing electromagnetic fields. Clin Orthop 1977;124:128.PubMedGoogle Scholar
  159. 159.
    Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop 1985;193:127.PubMedGoogle Scholar
  160. 160.
    Kahanovitz, N, Arnoczky SP, Hulse D, Shires PK. The effect of postoperative electromagnetic pulsing on canine posterior spinal fusions. Spine 1984;9(3):273.PubMedGoogle Scholar
  161. 161.
    Nerubay J, Marganit B, Bubis JJ, et al. Stimulation of bone formation by electrical current on spinal fusion. Spine 1986;11(2):167.PubMedGoogle Scholar
  162. 162.
    Rothman RH, Klemek JS, Toton JJ. The effect of iron deficiency anemia on fracture healing. Clin Orthop 1971;77:276.PubMedGoogle Scholar
  163. 163.
    Bell GR, Gurd AR, Orlowski JP, Andrish, JT. The syndrome of inappropriate antidiuretic-hormone secretion following spinal fusion. J Bone Joint Surg 1986; 68A: 720.Google Scholar
  164. 164.
    Brown CW, Orme TJ, Richardson HD. The rate of pseudarthrosis (surgical non-union) in patients who are smokers and patients who are non-smokers. Spine 1986;11:942.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • George F. Muschler
  • Joseph M. Lane
  • Edgar G. Dawson

There are no affiliations available

Personalised recommendations