Patterns of Primary Production and Herbivory in 25 North American Lake Ecosystems

  • Stephen R. Carpenter
  • Thomas M. Frost
  • James F. Kitchell
  • Timothy K. Kratz
  • David W. Schindler
  • John Shearer
  • W. Gary Sprules
  • Michael J. Vanni
  • Ann P. Zimmerman


The effects of nutrients and herbivory on phytoplankton biomass and production were examined, using data from 25 lakes studied for 2 to 6 years each. Variance among lakes was substantially greater than variance among years, for all physical, chemical, phytoplankton, and zooplankton variates studied. Experimentally manipulated lakes had coefficients of variation within the range exhibited by nonmanipulated lakes. Graphical, correlative, and regression analyses illustrated the significant joint effects of both nutrients and herbivory on phytoplankton biomass and production. A Bayesian analysis of sensitivity to new information showed that the statistical models for chlorophyll are quite robust. Statistical models for primary production were deemed less conclusive, because primary production was measured in fewer lakes. We provide a list of common challenges in comparative statistical analysis of ecosystems and explain their implications for our study. The major pattern apparent in our data—that summer chlorophyll responds positively to nutrients and negatively to herbivore size — is congruent with results of whole-lake experiments in which nutrients or predators were manipulated.


Phytoplankton Biomass Algal Biomass Zooplankton Biomass Photic Zone Herbivore Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartell, S.M. and J.F. Kitchell. (1978). Seasonal impact of planktivory on phosphorus release by Lake Wingra zooplankton. Verh. Int. Verein. Limnol. 20:466–474.Google Scholar
  2. Bartell, S.M., A.L. Brenkert, R.V. O’Neill, and R.H. Gardner. (1988). Temporal variation in regulation of production in a pelagic food web model. In: Complex Interactions in Lake Communities, S.R. Carpenter, ed. Springer-Verlag, New York, pp. 101–118.CrossRefGoogle Scholar
  3. Box, G.E.P. (1966). Use and abuse of regression. Technometrics 8:625–629.CrossRefGoogle Scholar
  4. Box, G.E.P. (1980). Sampling and Bayes’ inference in scientific modeling and robustness. J. R. Stat. Soc. Ser. A 143:383–430.CrossRefGoogle Scholar
  5. Box, G.E.P. and G.C. Tiao. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, Massachusetts.Google Scholar
  6. Box, G.E.P., W.G. Hunter, and J.S. Hunter. (1978). Statistics for Experimenters. Wiley, New York.Google Scholar
  7. Bower, P.M., C.A. Kelly, E.J. Fee, J.A. Shearer, D.R. DeClerq, and D.W. Schindler. (1987). Simultaneous measurement of primary production by whole-lake and bottle radiocarbon additions. Limnol. Oceanogr. 32:299–312.CrossRefGoogle Scholar
  8. Brock, T.D. (1985). A Eutrophic Lake: Lake Mendota, Wisconsin. New York: Springer-Verlag.CrossRefGoogle Scholar
  9. Brooks, J.L. and S.I. Dodson. (1965). Predation, body size, and composition of plankton. Science 150:28–35.PubMedCrossRefGoogle Scholar
  10. Brylinsky, M. and K.H. Mann. (1973). An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18:1–14.CrossRefGoogle Scholar
  11. Canfield, D.E. and R.W. Bachman. (1981). Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can. J. Fish. Aquat. Sci. 38:414–423.CrossRefGoogle Scholar
  12. Carpenter, S.R. (1983). Lake geometry: implications for production and sediment accretion rates. J. Theor. Biol. 105:273–286.CrossRefGoogle Scholar
  13. Carpenter, S.R., ed. (1988a). Complex Interactions in Lake Communities. New York: Springer-Verlag.Google Scholar
  14. Carpenter, S.R. (1988b). Transmission of variance through lake food webs. In: Complex Interactions in Lake Communities (S.R. Carpenter, ed.). Springer-Verlag, New York, pp. 119–138.CrossRefGoogle Scholar
  15. Carpenter, S.R. (1989). Replication and treatment strength in whole-lake experiments. Ecology 70:453–463.CrossRefGoogle Scholar
  16. Carpenter, S.R. and J.F. Kitchell. (1984). Plankton community structure and limnetic primary production. Am. Nat. 124:159–172.CrossRefGoogle Scholar
  17. Carpenter, S.R. and J.F. Kitchell. (1987). The temporal scale of variance in limnetic primary production. Am. Nat. 129:417–433.CrossRefGoogle Scholar
  18. Carpenter, S.R. and J.F. Kitchell. (1988). Consumer control of lake productivity. BioScience 38:764–769.CrossRefGoogle Scholar
  19. Carpenter, S.R., J.J. Elser, and M.M. Elser. (1986). Chlorophyll production, degradation, and sedimentation: implications for paleolimnology. Limnol. Oceanogr. 31:112–124.CrossRefGoogle Scholar
  20. Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. (1985). Cascading trophic interactions and lake productivity. BioScience 35:634–639.CrossRefGoogle Scholar
  21. Carpenter, S.R., T.M. Frost, D. Heisey, and T.K. Kratz. Randomized intervention analysis and the interpretation of whole ecosystem experiments. Ecology 70 (in press).Google Scholar
  22. Carpenter, S.R., J.F. Kitchell, J.R. Hodgson, P.A. Cochran, J.J. Elser, M.M. Elser, D.M. Lodge, D. Kretchmer, X. He, and C.N. von Ende. (1987). Regulation of lake primary productivity by food web structure. Ecology 68:1863–1876.CrossRefGoogle Scholar
  23. Chang, P.S.S., D.F. Malley, W.J. Findlay, W. Mueller, and R.T. Barnes. (1980). Species composition and seasonal abundance of zooplankton in Lake 227, Experimental Lakes Area, northwestern Ontario, 1969–1978. Can. Data Rep. Fish. Aquat. Sci. 182:1–101.Google Scholar
  24. Chang, P.S.S., D.F. Malley, W.J. Findlay, R.T. Barnes. (1984). Zooplankton in Lake 226, Experimental Lakes Area, northwestern Ontario, 1971–1978 data. Can. Data Rep. Fish. Aquat. Sci. No 484. 208 pp.Google Scholar
  25. Chatfield, C. (1980). The Analysis of Time Series. New York: Halsted Press.Google Scholar
  26. Crowder, L.B., R.W. Drenner, W.C. Kerfoot, D.J. McQueen, E.L. Mills, U. Sommer, C.N. Spencer, and M.J. Vanni. (1988). Food web interactions in lakes. In: Complex Interactions in Lake Communities, S.R. Carpenter, ed. Springer-Verlag, New York, pp. 141–160.CrossRefGoogle Scholar
  27. Dillon, P.J. and F.H. Rigler. (1974). The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19:767–773.CrossRefGoogle Scholar
  28. Dillon, P.J. and F.H. Rigler. (1975). A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd. Can. 32:1519–1531.CrossRefGoogle Scholar
  29. Downing, J.A. and F.H. Rigler. (1984). A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Black well, Oxford.Google Scholar
  30. Draper, N. and H. Smith. (1981). Applied Regression Analysis, 2nd Ed. Wiley, New York.Google Scholar
  31. Eiser, J.J., M.M. Elser, N.A. MacKay, and S.R. Carpenter. (1988). Zooplankton-mediated transitions between N and P limited algal growth. Limnol. Oceanogr. 33:1–14.CrossRefGoogle Scholar
  32. Fee, E.J. (1973). A numerical model for determining integral primary production and its application to Lake Michigan. J. Fish. Res. Bd. Can. 30:1447–1468.CrossRefGoogle Scholar
  33. Fee, E.J. (1979). A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol. Oceanogr. 24:401–416.CrossRefGoogle Scholar
  34. Frost, T.M. and P.K. Montz. (1988). Early zooplankton response to experimental acidification in Little Rock Lake, Wisconsin, USA. Verh. Int. Verein. Limnol. 23:2279–2285.Google Scholar
  35. Harris, G.P. (1986). Phytoplankton Ecology. Chapman and Hall, London.Google Scholar
  36. Henrikson, L., Nyman, H.G., Oscarson, H.G., and J.A.E. Stenson. (1980). Trophic changes without changes in external nutrient loading. Hydrobiologia 68:257–263.CrossRefGoogle Scholar
  37. Hocking, R.R. (1983). Developments in linear regression methodology: 1959–1982. Technometrics 25:219–230.CrossRefGoogle Scholar
  38. Hrbacek, J.M., Dvorakova, M., Korinek, V., and L. Prochazkova. (1961). Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verh. Int. Verein. Limnol. 14:192–195.Google Scholar
  39. Kerfoot, W.C. and A. Sih, eds. (1987). Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  40. Kitchell, J.F. and S.R. Carpenter. (1987). Piscivores, planktivores, fossils and phorbins. In: Predation: Direct and Indirect Impacts on Aquatic Communities, W.C. Kerfoot and A. Sih, eds. University Press of New England, Hanover, New Hampshire, pp. 132–146.Google Scholar
  41. Kitchell, J.F., R.V. O’Neill, D. Webb, G.W. Gallepp, S.M. Bartell, J.F. Koonce, and B.S. Ausmus. (1979). Consumer regulation of nutrient cycling. BioScience 29:28–34.CrossRefGoogle Scholar
  42. Koonce, J.F. (1972). Phytoplankton Succession and a Dynamic Model of Algal Growth and Nutrient Uptake. Ph.D. Dissertation, University Wisconsin-Madison.Google Scholar
  43. Kratz, T.K., T.M. Frost, and J.J. Magnuson. (1987). Inferences from spatial and temporal variability in ecosystems: analyses of long-term zooplankton data from a set of lakes. Am. Nat. 129:830–846.CrossRefGoogle Scholar
  44. Leavitt, P.R., S.R. Carpenter, and J.F. Kitchell. Whole lake experiments: the annual record of fossil pigments and zooplankton. Limnol. Oceanogr. 34 (in press).Google Scholar
  45. LeCren, E.D. and R. Lowe-McConnell, eds. (1981). Functioning of Freshwater Ecosystems. Cambridge University Press, London.Google Scholar
  46. Likens, G.E. (1985). An experimental approach for the study of ecosystems. J. Ecol. 73:381–396.CrossRefGoogle Scholar
  47. Lindeman, R.L. (1942). The trophic-dynamic aspect of ecology. Ecology 23:399–418.CrossRefGoogle Scholar
  48. Lynch, M., L.J. Weider, and W. Lampert. (1986). Measurement of the carbon balance in Daphnia. Limnol. Oceanogr. 31:17–33.CrossRefGoogle Scholar
  49. Malley D.F., P.S.S. Chang, and D.W. Schindler. (1988). Decline of zooplankton populations following eutrophication of Lake 227, Experimental Lakes Area, Ontario: 1969–1974. Can. Tech. Rep. Fish. Aquat. Sci. 1619:1–25.Google Scholar
  50. McCauley, E. and J. Kalff. (1981). Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38:458–463.CrossRefGoogle Scholar
  51. McQueen, D.J., J.R. Post, and E.L. Mills. (1986). Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43:1571–1581.CrossRefGoogle Scholar
  52. Mills, E.L. and A. Schiavone. (1982). Evaluation of fish communities through assessment of zooplankton populations and measures of lake productivity. North Am. J. Fish. Manage. 2:14–27.CrossRefGoogle Scholar
  53. Naiman, R.J. (1988). Animal influences on ecosystem dynamics. BioScience 38: 750–752.CrossRefGoogle Scholar
  54. Nicholls, K.H. and P.J. Dillon. (1978). An evaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Rev. Gesamten Hydrobiol. 63:141–154.CrossRefGoogle Scholar
  55. Northcote, T.G. (1988). Fish in the structure and function of freshwater ecosystems: a “top-down” view. Can. J. Fish. Aquat. Sci. 45:361–379.CrossRefGoogle Scholar
  56. Pace, M.L. (1984). Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. Aquat. Sci. 41:1089–1096.CrossRefGoogle Scholar
  57. Paine, R.T. (1966). Food web complexity and species diversity. Am. Nat. 100:65–75.CrossRefGoogle Scholar
  58. Paine, R.T. (1980). Food webs, linkage interaction strength, and community infrastructure. J. Anim. Ecol. 49:667–685.CrossRefGoogle Scholar
  59. Pedros-Alio, C. (1981). Ecology of Heterotrophic Bacteria in the Epilimnion of Eutrophic Lake Mendota, Wisconsin. Ph.D. Dissertation, University of Wisconsin-Madison.Google Scholar
  60. Persson, L., G. Andersson, S.F. Hamrin, and L. Johansson. (1988). Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In: Complex Interactions in Lake Communities, S.R. Carpenter, ed. Springer-Verlag, New York, pp. 45–68.CrossRefGoogle Scholar
  61. Peters, R.H. and J.A. Downing. (1984). Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29:763–784.CrossRefGoogle Scholar
  62. Prentki, R.T., D.S. Rogers, V.J. Watson, P.R. Weiler, and O.L. Loucks. (1977). Summary tables of Lake Wingra basin data. Univ. Wis. Inst. Environ. Stud. Rep. 85:1–89.Google Scholar
  63. Riemann, B. and M. Sondergaard. (1986). Carbon Dynamics of Eutrophic, Temperate Lakes. Elsevier, Amsterdam.Google Scholar
  64. Schindler, D.W. (1974). Eutrophication and recovery in experimental lakes: implications for lake management. Science 184:897–899.PubMedCrossRefGoogle Scholar
  65. Schindler, D.W. (1977). The evolution of phosphorus limitation in lakes. Science 195:260–262.PubMedCrossRefGoogle Scholar
  66. Schindler, D.W. (1978). Factors regulating phytoplankton production and standing crop in the world’s lakes. Limnol. Oceanogr. 23:478–486.CrossRefGoogle Scholar
  67. Schindler, D.W. (1988). Experimental studies of chemical stressors on whole-lake ecosystems. Verh. Int. Verein. Limnol. 23:11–41.Google Scholar
  68. Schindler, D.W., E.J. Fee, and T. Ruszczynski. (1978). Phosphorus input and its consequences for phytoplankton standing crop and production in the Experimental Lakes Area and similar lakes. J. Fish. Res. Bd. Can. 35:190–196.CrossRefGoogle Scholar
  69. Shapiro, J. and D.I. Wright. (1984). Lake restoration by biomanipulation: Round Lake, Minnesota: the first two years. Freshwater Biol. 14:371–383.CrossRefGoogle Scholar
  70. Shapiro, J., V. Lamarra, and M. Lynch. (1975). Biomanipulation: an ecosystem approach to lake restoration. In: Proceedings of a Symposium on Water Quality Management Through Biological Control, P.L. Brezonik and J.L. Fox, eds. University of Florida, Gainesville, pp. 85–96.Google Scholar
  71. Shearer, J.A., E.J. Fee, E.R. DeBruyn, and D.R. DeClerq. (1987). Phytoplankton productivity changes in a small double-basin lake in response to termination of experimental fertilization. Can. J. Fish. Aquat. Sci. 44:47–54.CrossRefGoogle Scholar
  72. Shearer, J.A., E.R. DeBruyn, D.R. DeClerq, D.W. Schindler, and E.J. Fee. (1985). Manual of phytoplankton primary production methodology. Can. Tech. Rep. Fish. Aquat. Sci. 1341:1–58.Google Scholar
  73. Sommer, U., Z.M. Gliwicz, W. Lampert, and A. Duncan. (1986). The PEG model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  74. Sprules, W.G. and M. Munawar. (1986). Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43:1789–1794.CrossRefGoogle Scholar
  75. Sprules, W.G., J.M. Casselman, and B.J. Shuter. (1983). Size distribution of pelagic particles in lakes. Can. J. Fish. Aquat. Sci. 40:1761–1769.CrossRefGoogle Scholar
  76. Stainton, M.P., M.J. Capel, and F.A.J. Armstrong. (1977). The Chemical Analysis of Fresh Water, 2nd Ed. Can. Fish. Mar. Serv. Misc. Spec. Pub. 25.Google Scholar
  77. Stein, R.A., S.T. Threlkeld, CD. Sandgren, W.G. Sprules, L. Persson, E.E. Werner, W.E. Neill, and S.I. Dodson. (1988). Size-structured interactions in lake communities. In: Complex Interactions in Lake Communities, S.R. Carpenter, ed. Springer-Verlag, New York, pp. 161–180.CrossRefGoogle Scholar
  78. Titus, J.E. 1977. The Comparative Physiological Ecology of Three Submersed Macrophytes. Ph.D. Dissertation, University of Wisconsin-Madison.Google Scholar
  79. Vollenweider, R.A. (1968). Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Organization for Economic Cooperation and Development, Paris.Google Scholar
  80. Walters, C. (1986). Adaptive Management of Renewable Resources. MacMillan, New York.Google Scholar
  81. Watras, C. and T.M. Frost. (1989). Little Rock Lake: perspectives on an experimental ecosystem approach to seepage lake acidification. Arch. Environ. Contam. Toxicol. 18:157–165.CrossRefGoogle Scholar
  82. Wilkinson, L. (1988). SYSTAT: The System for Statistics. Systat Inc., Evanston, Illinois.Google Scholar
  83. Zimmerman, A.P., K.M. Noble, M.A. Gates, and J.E. Paloheimo. (1983). Physico-chemical typologies of south-central Ontario lakes. Can. J. Fish. Aquat. Sci. 40:1788–1803.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Stephen R. Carpenter
  • Thomas M. Frost
  • James F. Kitchell
  • Timothy K. Kratz
  • David W. Schindler
  • John Shearer
  • W. Gary Sprules
  • Michael J. Vanni
  • Ann P. Zimmerman

There are no affiliations available

Personalised recommendations