Advertisement

The Aliasing Effect in Coefficients Estimation

Extended Abstract
  • A. Albertella
  • F. Migliaccio
  • F. Sansó
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 106)

Abstract

Following the involvement of the Istituto di Topografia, Fotogrammetria and Geofisica of the Politecnico di Milano in the ESA study concerning the Aristoteles mission (✸) requirements and results, the authors have chosen as their specific scientific goal the pursuit of a better knowledge of a global model of the gravity field, in terms of the coefficients of the expansion of the gravity potential into spherical harmonics, truncated at degree L:
$$v = \mathop {{\Sigma _1}}\limits_0^L \mathop {{\Sigma _m}}\limits_0^1 \mathop {{\Sigma _\alpha }}\limits_0^1 {v_{1m\alpha }}{\left( {\frac{R}{r}} \right)^{1 + 1}}{Y_{1m\alpha }}\left( \sigma \right)$$
(1)

R = radius of the Earth

r = radius of the satellite orbit

Keywords

Gravity Potential Circular Orbit Commission Error Spherical Harmonic Expansion Geoid Undulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brovelli, M. and Sansó, F. (1990). Gradiometry: the study of the Vcomponent in the BVP approach, Accept. in Man. Geod.Google Scholar
  2. Colombo, O. (1980). Numerical methods for harmonic analysis on the sphere, Dept. of Geod. Sci. Rep. 310, Ohio State Univ.Google Scholar
  3. Migliaccio, F. and Sansó, F. (1989). Data processing for the Aristoteles mission, Proc. Italian Workshop on the European Solid Hearth Mission Aristoteles, Trevi, Italy, May 30–31.Google Scholar
  4. Sacerdote, F. and Sansó, F. (1985). Overdetermined boundary value problems with parameters, Man. Geod .10, 195–207.Google Scholar
  5. Sacerdote,F. and Sansó, F.(1986). On the overdetermined gravimetry-gradiometry problem in physical geodesy, Int. Symp. “On the Figure and Dynamics of the Earth, Moon and Other Planets”,Prague.Google Scholar
  6. Sacerdote, F. and Sansó, F. (1989). Some problems related to satellite gradiometry, Bull. Géod. 63, 405–415.CrossRefGoogle Scholar
  7. Sansó, F. (1988). The Wiener integral and the overdetermined boundary value problems of physical geodesy, Man. Geod. vol. 13, n. 2.Google Scholar
  8. Sansó, F. (1989). On the aliasing problem with the harmonic analysis on the sphere, Proc. II Hotine-Marussi Symp., Pisa, Italy, June 3–5.Google Scholar
  9. Sansó, F. (1989). Computing an a-priori error for Txz, Mid-term Report of the CIGAR WP 330, Delft, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • A. Albertella
    • 1
  • F. Migliaccio
    • 1
  • F. Sansó
    • 1
  1. 1.Istituto di TopografiaFotogrammetria e GeofisicaMilanoItaly

Personalised recommendations