Advertisement

A Class of I.M. Vinogradov’s Series and Its Applications in Harmonic Analysis

  • K. I. Oskolkov
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)

Abstract

The present paper is a survey of the author’s recent research in the one-dimensional trigonometric series of the type
$$\sum\limits_n {\hat f\left( n \right)} {e^{2\pi i\left( {{n^r}{x_r} + \cdots + n{x_1}} \right)}}.$$
(1.1)

Keywords

Fourier Series Initial Function Algebraic Polynomial Lebesgue Constant Schroedinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.I. Arkhipov, On the Hilbert-Kamke Problem, Izv. Akad. Nauk SSSR, Ser Mat., 48(1984), 3–52; English transl. in Math. USSR Izv., 24(1985).MathSciNetzbMATHGoogle Scholar
  2. [2]
    G.I. Arkhipov and K.I. Oskolkov, On a special trigonometric series and its applications, Matem Sbornik, 134(176) (1987), N2; Engl, transl. in Math. USSR Sbornik, 62(1989), N1, 145–155.Google Scholar
  3. [3]
    N.K. Bari, A Treatise on Trigonometric Series, v. 1, (Pergamon Press, N.Y.), 1964.Google Scholar
  4. [4]
    L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116(1966), 133–157.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Yung-Ming Chen, A remarkable divergent Fourier series, Proc. Japan Acad., 38(1962), 239–244.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    L. de Michele and P.M. Soardi, Uniform convergence of lacunary Fourier series, Colloq. Math., 36(1976), 285–287.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. Fiedler, W. Jurkat, and O. Koerner, Asymptotic expansion of finite theta series, Acta Arithmetica, 32(1977), 129–146.MathSciNetzbMATHGoogle Scholar
  8. [8]
    A. Figa-Talamanca, An example in the theory of lacunary Fourier series, Boll. Un. Mat. Ital. (4), 3(1970), 375–378.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J.E. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math., 105(1983), 115–141.MathSciNetzbMATHGoogle Scholar
  10. [10]
    R.P. Gosselin, On the divergence of Fourier series, Proc. Amer. Math. Soc, 9(1958), 278–282.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    G.H. Hardy, Collected Papers of G.H. Hardy (Oxford: Clarendon Press), 1966, v. 1.zbMATHGoogle Scholar
  12. [12]
    G.H. Hardy and J.E. Littlewood, Some problems of Diophantine approximation. II. The trigonometrical series associated with the elliptic θ-functions, Acta Math., 37(1914), 193–238.MathSciNetCrossRefGoogle Scholar
  13. [13]
    R.A. Hunt, An estimate of the conjugate function, Studia Math., 44(1972), 371–377.MathSciNetGoogle Scholar
  14. [14]
    R.A. Hunt, On the convergence of Fourier series. Orthogonal Expansions and Their Continuous Analogues. (Proc Conf. Edwardsville, Ill. (1967)), 235–255. Southern Ill. Univ. Press, Carbondale, Ill., (1968).Google Scholar
  15. [15]
    Chen Jing-run, On Professor Hua’s estimate of exponential sums, Sci. Sinica, 20 (1977), 711–719.MathSciNetzbMATHGoogle Scholar
  16. [16]
    A.N. Kolmogorov, Sur les fonctions harmoniques conjugees et les series de Fourier, Fund. Math., 7(1925), 24–29.Google Scholar
  17. [17]
    A.N. Kolmogorov, Une serie de Fourier Lebesgue divergente partout, CR. Acad. Sei Paris, 183(1926), 1327–1328.Google Scholar
  18. [18]
    A.N. Kolmogorov, Une série de Fourier-Lebesgue divergente presque partout, Fund. Math., 4(1923), 324–328.Google Scholar
  19. [19]
    S.V. Konyagin, On Littlewood’s conjecture, Izv. Akad. Nauk SSSR Ser. Mat., 45(1981), 243–265.MathSciNetzbMATHGoogle Scholar
  20. [20]
    E. Makai, On the summability of the Fourier series of L 2 ü2. IV. Acta Math. Ac. Sei Hung., 20(1969), 383–391.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    K.I. Oskolkov, I.M. Vinogradov series and integrals and their applications, Trudy Mat. Inst Steklov, 190(1989), 186–221.MathSciNetzbMATHGoogle Scholar
  22. [22]
    K.I. Oskolkov, I.M. Vinogradov’s series in the Cauchy problem for Schroedinger type equations, Trudy Mat. Inst. Steklov, 200(1991) (in print).Google Scholar
  23. [23]
    K.I. Oskolkov, On functional properties of incomplete Gaussian sums, Canad. J. Math., 43(1991), No. 1, 182–212.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    K.I. Oskolkov, On properties of a class of Vinogradov series, Doklady Acad. Nauk SSSR, 300(1988), N4, 737–741; Engl, transl. in Soviet Math. Dokl., 37(1988), N3.MathSciNetGoogle Scholar
  25. [25]
    K.I. Oskolkov, On spectra of uniform convergence, Dokl. Akad. Nauk SSSR, 288(1986), N1; Engl, transl. in Soviet Math. Dokl, 33(1986), N3, 616–620.MathSciNetGoogle Scholar
  26. [26]
    K.I. Oskolkov, Subsequences of Fourier sums of integrable functions, Trudy Mat. Inst. Steklov, 167(1985), 239–360; Engl, transl. in Proc. Steklov Inst. Math. 1986, N2 (167).MathSciNetzbMATHGoogle Scholar
  27. [27]
    L. Pedemonte, Sets of uniform convergence, Colloq. Math., 33(1975), 123–132.MathSciNetzbMATHGoogle Scholar
  28. [28]
    N. Saitô and Y. Aizawa, editors, Progress of Theoretical Physics, Supplement, No. 98,1989. New trends in chaotic dynamics of Hamiltonian systems, Kyoto University, Japan.Google Scholar
  29. [29]
    B. Smith, O.C. McGehee, L. Pigo, Hardy’s inequality and L 1-norm of exponential sums, Ann. Math. 113(1981), N3, 613–618.zbMATHCrossRefGoogle Scholar
  30. [30]
    S.B. Stechkin, Estimate of a complete rational trigonometric sum, Trudy Mat. Inst. Steklov, 143(1977), 188–207; English transl. in Proc. Steklov Inst. Math. 1980, N1 (143).MathSciNetGoogle Scholar
  31. [31]
    S.B. Stechkin, On absolute convergence of Fourier series. III, Izv. Akad. Nauk SSSR Ser. Mat., 20(1956), 385–412. (Russian).Google Scholar
  32. [32]
    E.M. Stein, On limits of sequences of operators, Ann. Math., 74(1961), 140–170.zbMATHCrossRefGoogle Scholar
  33. [33]
    E.M. Stein, Oscillatory integrals in Fourier analysis, In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., (1986), 307–355.Google Scholar
  34. [34]
    E.M. Stein and S. Wainger, The estimation of an integral arising in multiplier transformations, Studia Math., 35(1970), 101–104.MathSciNetzbMATHGoogle Scholar
  35. [35]
    E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc, 84(1978), 1239–1295.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    V. Totik, On the divergence of Fourier series, Publ. Math. Debrecen, 29(1982), 251–264.MathSciNetzbMATHGoogle Scholar
  37. [37]
    G. Travaglini, Some properties of UC-sets, Boll. Un. Math. Ital. B(5), v. 15 (1978), 275–284.MathSciNetGoogle Scholar
  38. [38]
    P.L. Ul’yanov, Some questions in the theory of orthogonal and biorthogonal series, Izv. Akad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn. Math. Nauk (1965), no. 6, 11–13 (Russian).Google Scholar
  39. [39]
    I.M. Vinogradov, The Method of Trigonometric Sums in Number Theory, 2nd ed. “Nauka,” Moscow 1980; English transl. in his Selected Works, Springer Verlag, 1985.zbMATHGoogle Scholar
  40. [40]
    S. Wainger, Applications of Fourier transforms to averages over lower dimensional sets, Proc. Symposia in Pure Math., 35 (part 1), 1979, 85–94.Google Scholar
  41. [41]
    S. Wainger, Averages and singular integrals over lower dimensional sets, In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., (1986), 357–421.Google Scholar
  42. [42]
    S. Wainger, On certain aspects of differentiation theory, Topics in modern harmonic analysis (Proc. Seminar Torino and Milano, May-June 1982), 42(Roma, 1983), 667–706.Google Scholar
  43. [43]
    D.M. Wardlaw and W. Jaworski, Time delay, resonances, Riemann zeros and Chaos in a model quatum scattering system, J. Phys. A: Math. Gen., 22(1989), 3561–3575.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    H. Weyl, Über die Gleichverteilung der Zahlen mod Eins, Math. Ann., 77(1915/16), 313–352.MathSciNetGoogle Scholar
  45. [45]
    A. Zygmund, Trigonometric Series, 2nd rev. ed., v. 1, Cambridge Univ. Press. 1959.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • K. I. Oskolkov
    • 1
  1. 1.Department of Math. & Statistics Jeffrey HallQueen’s UniversityKingstonCanada

Personalised recommendations