Plastid Developmental Pathways in Some Angiosperm Reproductive Cells

  • Ettore Pacini
  • Philip E. Taylor
  • Mohan B. Singh
  • R. Bruce Knox


Plants such as algae and mosses have only one plastid type i.e. the chloroplast, their number is very low per cell. From pteridophyta onwards other plastid types appear; in angiosperm at least five plastid types are recognized: proplastid, amyloplast, chloroplast, chromoplast, elaioplast (Schnepf, 1980). Some authors such as Whatley (1977) distinguish seven types. The number per cell in angiosperm is high and constant for each cell type (Butterfass, 1979). Plastid types are recognized by classical cytologists on the basis of their appearance under EM rather than their metabolism. Chloroplast is the only plastid type where we are reasonably sure that the morphology corresponds to the metabolic activity of this organelle engaged in the photosythetizing activity. The products of the photosynthesis, the starch can be present inside: a) chloroplasts; b) amyloplasts; c) proplastid. The period of storage lasts a few hours in case a), is undeterminate in case b); ranges from few hours to some months in case c). Sometimes it is difficult to distinguish proplastids from amyloplasts. We define plastids as amyloplasts when the starch fills the stroma and proplastids when only a few granules per plastid are present.


Sperm Cell Ripe Pollen Angiosperm Pollen Plastid Development Lycopersicum Peruvianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, HG.; Baker, I. Starch in angiosperm pollen grains and its evolutionary significance. Am. J. Bet. 66: 591 – 600; 1979.CrossRefGoogle Scholar
  2. Butterfass, T. Patterns of chloroplast reproduction: A developmental approach to protoplasmic plant anatomy. Springer Verlag, Wien; 1979.Google Scholar
  3. Dickinson, HG.; Lewis, D. The formation of tryphine coating the pollen grains of Raphanus. Proc. R. Soc. Lond. B 184: 149 – 165: 1973.CrossRefGoogle Scholar
  4. Folsom, MW.; Peterson, CM. Ultrastructural aspects of the mature embryo sac of soybean, Glycine max (L.) Merr.. Bot. Gaz. 145: 1 – 10; 1984.CrossRefGoogle Scholar
  5. Hageman, R.; Schroeder. MB. The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152: 57 – 64; 1989.CrossRefGoogle Scholar
  6. Heslop-Harrison, J. Sexuality of angiosperms. In: Plant Physiology (Steward FC ed.), Academic Press, London, VIC, p. 133–189; 1972.Google Scholar
  7. Jensen, WA. Reproduction in flowering plants. In: Dynamic Aspects of Plant Infrastructure (Robards AW. ed.) p. 481 – 503. Mc Graw Hill, London; 1974.Google Scholar
  8. Jobson, S.; Knox, RB.; Kenrick, J.; Dumas, C. Plastid development and ferritin content of stigmas of the legumes Acacia, Lotus and Trifolium. Protoplasma 116: 213 – 218; 1983.CrossRefGoogle Scholar
  9. Meyer, B.; Stubbe, W. Das Zahlenverhaltnis von mutterlichen und vaterlichen Plastiden in den Zygoten von Oenothera erythrosepala Borbas (syn. Oe. lamarkiana) Ber. Deut. Bot. Ges. 89: 29 – 39; 1974.Google Scholar
  10. Nakamura, S.; Miki—Hirosige H. Fine-structural study on the formation of the generative cell wall and intine-3 layer in a growing pollen grain of Lilium longiflorum. Amer. J. Bot. 72: 365 – 375; 1985.CrossRefGoogle Scholar
  11. Pacini,E.; Bellani, LM.; Lozzi, R. Pollen, tapetum and anther development in two cultivars of sweet cherry (Prunus avium). Phytomorphology 36: 197 – 210; 1986.Google Scholar
  12. Pacini, E.; Casadoro, G. Tapetum plastids in Olea europaea L.. Protoplasma 106: 289 – 296; 1981.CrossRefGoogle Scholar
  13. Pacini, E.; Cresti, G.; Sarfatti, G. Incorporation of integumentary nuclei in Eranthis hiemalis endosperm and their disaggregation by endoplasmic reticulum. J. Submicr. Cytol. 4: 19 – 31; 1972.Google Scholar
  14. Pacini, E.; Keijzer, CJ. Ontogeny of intruding non - periplasmodial tapetum in the wild chicory, Cichorium intybus (Compositae). PI. Syst. Evol. 167: 149 – 164; 1989.CrossRefGoogle Scholar
  15. Pacini, E.; Franchi, GG. Amylogenesis and amylolysis during pollen grain development. (Cresti, M.; Gori, P.; Pacini, E. eds.) Sexual reproduction in higher plants. Springer Verlag, Berlin; 1989: p. 181 – 186.Google Scholar
  16. Pacini, E.;Taylor, P.E.; Singh M.B.; Knox RB. TDevelopment of plastids, including amyloplasts and starch granules, in pollen and tapetum of rye-grass Lolium perenne L. Ann. Bot. in press, 1991.Google Scholar
  17. Pacini, E.; Juniper, BE. The ultrastructure of pollen-grain development in the olive (Olea europaea). 2. Secretion by the tapetal cells. New Pthytol. 83: 165 – 174; 1979.CrossRefGoogle Scholar
  18. Pacini, E.; Juniper BE. The ultrastructure of pollen grain development in Lycopersicum peruvianum. Caryologia 37: 21 – 50; 1984.Google Scholar
  19. Periasamy, K.; Sampoornam, C. The morphology and anatomy of ovule and fruit development in Arachis hypogaea L. Ann. Bot. 53: 399 – 411; 1984.Google Scholar
  20. Rascio, N.; Dalla Vecchia, F.; Casadoro, G. Behaviour of cotyledonal plastids during seed germination in some chioroembryophytes. Cytobios 64: 53 – 54; 1994.Google Scholar
  21. Russell, SD. Fertilization in Plumbago zeylanica: gametic fusion and fate of the male cytoplasm. Amer. J. Bot. 70: 416 – 434; 1983.CrossRefGoogle Scholar
  22. Russell, SD. Ultrastructure of the sperm of Plumbago zeylanica. 2. Quantitative cytology and three–dimensional organization. Planta 162: 385 – 391; 1984.CrossRefGoogle Scholar
  23. Russell, SD. Preferential fertilization in Plumbago: Ultrastructural evidence for gamete-level recognition in an angiosperm. Proc. Nat. Acad. Sci. USA 82: 6129 – 6132; 1985.PubMedCrossRefGoogle Scholar
  24. Schnepf, E. Types of plastids: their development and intercoversions. In:Chloroplast. (Reinert.J. ed.) Springer Verlag, Berlin, Heidelberg, New York 1980, p. 1 – 28.Google Scholar
  25. Sedgley, M. Ultrastructure and histochemistry of the watermelon stigma. J. Cell Sci. 48: 137 – 146; 1981.PubMedGoogle Scholar
  26. Theunis, C. Ultrastructural analysis of Spinacia oleracea sperm cells isolated from mature pollen grains. Protoplasma 158: 176 – 181; 1990.CrossRefGoogle Scholar
  27. Tilton, VR.; Mogensen, HL. Ultrastructural aspects of the ovule of Agave parryi before fertilization. Phytomorphology 29: 338 – 350; 1979.Google Scholar
  28. Thomson, WW.; Whatley JM. Development of non green plastids. Ann. Rev. Plant Physiol. 31: 375 – 394; 1980.CrossRefGoogle Scholar
  29. Went van, JL. Unequal distribution of plastids during generative cell formation in Impatiens. Theor. Appl. Genet. 68: 305 – 309; 1984.CrossRefGoogle Scholar
  30. Whatley, JM. Variation in the basic pathway of chloroplast development. New Phytol 78: 407 – 420; 1977.CrossRefGoogle Scholar
  31. Willemse, MTM.; van Went, JL The female gametophyte. In: “Embryology of Angiosperms” (Johri BM. ed.) Springer Verlag Berlin; 1984; p. 159–196.Google Scholar
  32. Willms, HJ. Pollen tube penetration and fertilization in spinach. Acta Bot Neerl 30: 101 – 122; 1981.Google Scholar
  33. You, R.; Jensen, WA. Ultrastructural observations of the mature megagametophyte and fertilization in wheat (Triticum aestivum). Can. J. Bot. 63: 163 – 178; 1985.CrossRefGoogle Scholar
  34. Zavada, MS. Pollen wall development of Austrobaileya maculata. Bot. Gaz. 145: 11 – 21; 1984.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Ettore Pacini
  • Philip E. Taylor
  • Mohan B. Singh
  • R. Bruce Knox

There are no affiliations available

Personalised recommendations