Some Questions Concerning Harmonic Measure

  • Christopher J. Bishop
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 42)

Abstract

The purpose of this note is to discuss some conjectures concerning harmonic measure. We will start by considering harmonic measure on a simply connected plane domain Ω, but eventually we will also consider some multiply connected and higher dimensional domains. Most of these questions are trivial if ∂Ω has tangents a.e. and many are easy if Ω is only a quasicircle. Thus they are really questions about very non-smooth domains.

Key words

Harmonic measure twist points Hausdorff dimension eigenvalues of Laplacian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.V. Ahlfors, Conformai Invariants, McGraw-Hill, New York, 1973.Google Scholar
  2. [2]
    ___, Lectures on quasiconformal mappings, Wadsworth and Brooks/Cole, Monterey, California, 1987.MATHGoogle Scholar
  3. [3]
    A. Ancona, Une propiété de la compactifìcation de Martin d’un domaine euclidien, Ann. Inst. Fourier (Grenoble), 29 (1979), pp. 71–90.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in R n, Ark. Mat., 18 (1980), pp. 53–72.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    A. Beurling, Études sur un Problem de Majoration, thesis, Upsala 1933.Google Scholar
  6. [6]
    C.J. Bishop, Harmonic measures supported on curves, thesis, University of Chicago, 1987.Google Scholar
  7. [7]
    ___, Brownian motion in Denjoy domains, preprint, 1990.Google Scholar
  8. [8]
    ___, A characterization of Poissonian domains, to appear in Arkiv Mat..Google Scholar
  9. [9]
    C.J. Bishop, L. Carleson, J.B. Garnett and P.W. Jones, Harmonic measures supported on curves, Pacific J. Math., 138 (1989), pp. 233–236.MathSciNetMATHGoogle Scholar
  10. [10]
    C.J. Bishop and P.W. Jones, Harmonic measure and arclength, to appear in Ann. Math..Google Scholar
  11. [11]
    ___, Harmonic measure, L 2 estimates and the Schwarzian derivative, preprint 1990.Google Scholar
  12. [12]
    J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimensions, Inv. Math., 87 (1987), pp. 477–483.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    K. Burdzy and G.F. Lawler, Non-intersection exponents for Browian paths. Part II. Estimates and applications to a random fractal, to appear in Ann. Probab..Google Scholar
  14. [14]
    L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), pp. 113–123.MathSciNetMATHGoogle Scholar
  15. [15]
    S. Friedland and H.K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helv., 51 (1976), pp. 133–161.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    P.W. Jones and T.H. Wolff, Hausdorff dimension of harmonic measures in the plane, Acta. Math., 161 (1988), pp. 131–144.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    D.S. Jerison and C.E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math., 46 (1982), pp. 80–147.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    H. Kesten, HOW long are the arms in OLA?, J. Phy. A, 20 (1987), pp. L29–L33.MathSciNetCrossRefGoogle Scholar
  19. [19]
    ___, Hitting probabilities of random walks on Z d, Stochastic Process. Appl., 25 (1987), pp. 165–184.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    N.G. Makarov, On distortion of boundary sets under conformai mappings, Proc. London Math. Soc, 51 (1985), pp. 369–384.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    ___, Metric properties of harmonic measure, in Proceedings of the International Congress of Mathematicians, Berkeley 1986, Amer. Math. Soc, 1987, pp. 766–776.Google Scholar
  22. [22]
    J.E. McMillan, Boundary behavior of a conformai mapping, Acta. Math., 123 (1969), pp. 43–67.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Ch. Pommerenke, Univalent functions, Vanderhoeck and Ruprecht, Göttingen, 1975.MATHGoogle Scholar
  24. [24]
    ___, On conformai mapping and linear measure, J. Analyse Math., 46 (1986), pp; 231–238.Google Scholar
  25. [25]
    H.E. Stanley and N. Ostrowsky, On Gowth and form: fractal and non-fractal patterns in physics, Martinus Nijhoff Publishers, Boston, 1986.Google Scholar
  26. [26]
    E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1971.Google Scholar
  27. [27]
    T.H. Wolff, Counterexamples with harmonic gradients, preprint, 1987.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Christopher J. Bishop
    • 1
  1. 1.Dept. of MathematicsUCLAUSA

Personalised recommendations