Simple Monte Carlo P-Values

  • Julian Besag


Simple and simple sequential Monte Carlo tests are reviewed. Two previously unpublished applications are included.


Monte Carlo Test Spatial Point Pattern Fertility Gradient Expected Sample Size Monte Carlo Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnard, G.A. (1963). Discussion of paper by M.S. Bartlett. J. R. Statist. Soc. B 25, 294.MathSciNetGoogle Scholar
  2. Besag, J.E. (1978). Some methods of statistical analysis for spatial data. Bull. Int. Statist. Inst. 47, 77–92.MathSciNetGoogle Scholar
  3. Besag, J.E. and Clifford, P. (1989). Generalized Monte Carlo significance tests. Biometriha 76, 633–642.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Besag, J.E. and Clifford, P. (1991). Sequential Monte Carlo p-values. Biometria 78.Google Scholar
  5. Besag, J.E. and Diggle, P.J. (1977). Simple Monte Carlo tests for spatial pattern. Appi. Statist. 26, 327–333.CrossRefGoogle Scholar
  6. Besag, J.E. and Kempton, R.A. (1986). Statistical analysis of field experiments using neighbouring plots. Biometrics 42, 231–251.zbMATHCrossRefGoogle Scholar
  7. Birnbaum, Z.W. (1974). Computers and unconventional test-statistics. In Reliability and Biometry, Ed. F. Proschan and R.J. Serfling, pp.441–458. Philadelphia: SIAM.Google Scholar
  8. Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete Multivariate Analysis: Theory and Practice, M.I.T. Press.Google Scholar
  9. Bortkiewicz, L.V. (1898). Das Gesetz de Kleinen Zahlen, Leipzig: Teubner.Google Scholar
  10. Cliff, A.D. and Ord, J.K. (1981). Spatial Process: Models and Applications. London: Pion.zbMATHGoogle Scholar
  11. Diggle, P.J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.zbMATHGoogle Scholar
  12. Hope, A.C.A. (1968). A simplified Monte Carlo significance test procedure. J. R. Statist. Soc. B 30, 582–598.Google Scholar
  13. Jockei, K.H. (1984). Computational aspects of Monte Carlo tests. Proceedings of COMPSTAT 84, Vienna: International Association for Statistical Computing, Physica-Verlag.Google Scholar
  14. Jöckel, K.H. (1986). Finite sample properties and asymptotic efficiency of Monte Carlo tests. Ann. Statist. 14, 336–347.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Kempthorne, O. (1952). The Design and Analysis of Experiments. New York: Wiley.zbMATHGoogle Scholar
  16. Marriott, F.H.C. (1979). Monte Carlo tests: how many simulations? Appl. Statist. 28, 75–77.CrossRefGoogle Scholar
  17. Mehta, C.R. and Patel, N.R. (1983). A Network Algorithm for Performing Fisher’s Exact Test in rxc Contingency Tables. J. Amer. Statist. Assoc. 78, 427–434.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Patefield, W.M. (1981). An efficient method of generating random rxc tables with given row and column totals. Appl. Statist. 30, 91–97.zbMATHCrossRefGoogle Scholar
  19. Rasch, G. (1960). Probabilistic Models for some Intelligence and Attainment Tests. Copenhagen: Danish Educational Research Institute.Google Scholar
  20. Ripley, B.D. (1981). Spatial Statistics. New York: Wiley.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Julian Besag
    • 1
    • 2
  1. 1.Department of Statistics GN-22University of WashingtonSeattleUSA
  2. 2.Department of Mathematics and StatisticsThe UniversityNewcastle upon TyneUK

Personalised recommendations