Reals and Forcing with an Elementary Topos

  • Saunders Mac Lane
  • Ieke Moerdijk
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 21)

Abstract

Certain special types of categories, called Toposes, can formulate basic facts about sheaf theory in topology and algebraic geometry and thus clarify the role of geometry in independence proofs by forcing. They also establish a remarkable connection with intuitionist logic. This paper will summarize these results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BW]
    M. Barr and C. F. Wells, Triples, Topoi and Theories, Springer-Verlag, Heidelberg, 1985.Google Scholar
  2. [Be]
    J. L. Bell, Toposes and Local Set Theories, an Introduction, Clarendon Press, 1988, pp. 267.MATHGoogle Scholar
  3. [Bu]
    M. C. Bunge, Topos theory and Souslin’s hypothesis, J. Pure and Applied Algebra 4 (1974), 159–187.MathSciNetMATHCrossRefGoogle Scholar
  4. [C]
    P. J. Cohen, The independence of the continuum hypothesis, Proc. Nat. Acad. Sei. 50 (1963), 1143–1148 and 51 (1964), 105–110.Google Scholar
  5. [Fo]
    M. P. Fourman, Sheaf models for set theory, J. Pure and Applied Algebra 19 (1980), 91–101.MathSciNetMATHCrossRefGoogle Scholar
  6. [Fr]
    P. J. Freyd, The axiom of choice, J. Pure and Applied Algebra 19 (1980), 103–125. MathSciNetMATHCrossRefGoogle Scholar
  7. [GV]
    A. Grothendieck and J. L. Verdier, Theorie des Topos, SGA IV, Springer Lecture Notes in Math., Vol. 269/270 (1972).Google Scholar
  8. [J]
    P. T. Johnstone, Topos Theory, London Math. Soc. Monograph No. 10, Academic Press, New York, 1977, pp. 367.MATHGoogle Scholar
  9. [LS]
    J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic, Cambridge Univ. Press, 1986, pp. 293.MATHGoogle Scholar
  10. [L]
    F. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sei. USA 52 (1964), 1500–1511.Google Scholar
  11. [Macl]
    S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics No. 5, Springer-Ver lag, Heidelberg, 1971.MATHGoogle Scholar
  12. [Mac2]
    S. Mac Lane , Mathematics: Form and Function, Springer-Verlag, New York/Heidelberg, 1986, 476 pages.CrossRefGoogle Scholar
  13. [MacMo]
    S. MacLane and I. Moerdijk, A First Introduction to Topos Theory, (Springer-Verlag; in preparation).Google Scholar
  14. [Ma]
    A. R. D. Mathias, Notes on MacLane set theory, Preprint (1989), 11 pages. Google Scholar
  15. [Mi]
    W. Mitchell, Boolean topoi and the theory of sets, J. Pure and Applied Algebra 2 (1972), 261–274.MathSciNetMATHCrossRefGoogle Scholar
  16. [T]
    M. Tierney, Sheaf theory and the continuum hypothesis, in “Toposes, algebraic geometry, and logic”, F. W. Lawvere (ed.), Springer Lecture Notes in Math 274 (1972), 13–42.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc 1992

Authors and Affiliations

  • Saunders Mac Lane
    • 1
  • Ieke Moerdijk
    • 2
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA
  2. 2.Department of MathematicsThe University of UtrechtUtrechtThe Netherlands

Personalised recommendations