Advertisement

Pollutant Degradation by White Rot Fungi

  • David P. Barr
  • Steven D. Aust
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 138)

Abstract

The continually growing worldwide hazardous waste problem must be dealt with by the present as well as future generations. Past production and improper disposal of large quantities of environmentally persistent and toxic chemicals by both the government and the private sector has generated very legitimate public health concerns. Widespread contamination of soils as well as groundwater and surface water has brought this problem to the forefront. Cleanup of environmental pollution also presents a serious economic burden to society. In the United States alone, the cost of environmental decontamination is thought to range between $0.5 and $1.0 trillion (Aust 1993). Considering the magnitude of this financial burden, it becomes apparent that cost-effective yet efficient methods of decontamination are vital to our success in solving the hazardous waste problem. One such method that has become increasingly popular is bioremediation. The use of indigenous or introduced microorganisms to decontaminate waste sites provides a very attractive economic solution to many of our hazardous pollution problems.

Keywords

Lignin Degradation Lignin Peroxidase Phanerochaete Chrysosporium Veratryl Alcohol Pollutant Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu Y, Ma DB, Higuchi T, Shimada M (1990) A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. Fed Eur Biol Socs 269:261–263.CrossRefGoogle Scholar
  2. Aust SD, Bumpus JA (1989) Biological mineralization of constituents of coal tar by the white rot fungi. In: Proceedings of the Symposium on Biological Processing of Coal and Coal-Derived Substances, EPRI ER-6572, pp 4–49–4–63.Google Scholar
  3. Aust SD (1993) The fungus among us: Use of white rot fungi to biodegrade environmental pollutants. Environ Hlth Perspect 101:232–233.Google Scholar
  4. Barbeni M, Minero C, Pellizetti E (1987) Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere 16:2225–2237.CrossRefGoogle Scholar
  5. Barr DP, Shah MM, Grover TA, Aust SD (1992) Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 298:480–485.PubMedCrossRefGoogle Scholar
  6. Barr DP, Shah MM, Aust SD (1993) Veratryl alcohol dependent production of molecular oxygen by lignin peroxidase. J Biol Chem 268:241–244.PubMedGoogle Scholar
  7. Barr DP, Aust SD (1994a) Effect of superoxide and superoxide dismutase on lignin peroxidase. Arch Biochem Biophys 311:378–382.PubMedCrossRefGoogle Scholar
  8. Barr DP, Aust SD (1994b) Conversion of lignin peroxidase compound III to active enzyme. Arch Biochem Biophys 312:511–515.PubMedCrossRefGoogle Scholar
  9. Barr DP, Aust SD (1994c) Mechanisms white rot fungi use to degrade environmental pollutants. Environ Sei Technol 28:78A–87A.CrossRefGoogle Scholar
  10. Boominathan K, and Reddy, CA (1992) Fungal degradation of lignin: Biotechnological applications. In: Arora DK, Elander RP, Mukerji KG, (eds) Handbook of Applied Mycology. Marcel Dekker Inc, New York, vol 4, pp 763–821.Google Scholar
  11. Buettner GR (1993) The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol and ascorbate. Arch Biochem Biophys 300:535–543.PubMedCrossRefGoogle Scholar
  12. Bumpus JA, Aust SD (1987a) Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008.PubMedGoogle Scholar
  13. Bumpus JA, Aust SD (1987b) Mineralization of recalcitrant environmental pollutants by a white rot fungus. In: Proceedings of the National Conference on Hazardous Wastes and Hazardous Materials. Lib Congr Cat No 87–80469, pp 146–151.Google Scholar
  14. Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150.PubMedGoogle Scholar
  15. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phaner-ochaete chrysosporium. Appl Environ Microbiol 55:154–158.PubMedGoogle Scholar
  16. Cai D, Tien M (1990) Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: Equilibrium and kinetics studies. Biochemistry 29:2085–2091.PubMedCrossRefGoogle Scholar
  17. Cai D, Tien M (1993) Lignin-degrading peroxidases of Phanerochaete chrysospor-ium. J Biotechnol 30:79–90.PubMedCrossRefGoogle Scholar
  18. Chung N, Shah MM, Grover TA, Aust SD (1993) Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 306:70–75.PubMedCrossRefGoogle Scholar
  19. Coulter C, Kennedy JT, McRoberts WC, Harper DB (1993) Purification and properties of an S-adenosylmethionine 2,4-disubstituted phenol o-methyl transferase from Phanerochaete chrysosporium. Appl Environ Microbiol 59:706–711.PubMedGoogle Scholar
  20. Crawford R (1981) In: Lignin Biodegradation and Transformation. Wiley, New York.Google Scholar
  21. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118.PubMedGoogle Scholar
  22. Faison BD, Kirk TK (1983) Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl Environ Microbiol 46:1140–1145.PubMedGoogle Scholar
  23. Faison BD, Kirk TK (1985) Factors involved in regulation of ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304.PubMedGoogle Scholar
  24. Fernando T, Bumpus JA, Aust SD (1990) Biodégradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56: 1666–1671.PubMedGoogle Scholar
  25. Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462.PubMedGoogle Scholar
  26. Gilardi C, Harvey PJ, Cass AEG, Palmer JM (1990) Radical intermediates in veratryl alcohol oxidation by ligninase. NMR evidence. Biochim Biophys Acta 1041: 129–132.CrossRefGoogle Scholar
  27. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341.PubMedCrossRefGoogle Scholar
  28. Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696.PubMedCrossRefGoogle Scholar
  29. Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo(a)-pyrene by extracellular ligninases of Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696.CrossRefGoogle Scholar
  30. Haggblom MM, Apajalahti JHA, Salkinoja-Salonen MS (1988) O-methylation of chlorinated para-hydroquinones by Rhodococcus chlorophenolicus. Appl Environ Microbiol 54:1818–1824.PubMedGoogle Scholar
  31. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16953.PubMedGoogle Scholar
  32. Harper DB, Hamilton JTG (1988) Biosynthesis of chloromethane in Phellinus pomaceus. J Gen Microbiol 134:2831–2839.Google Scholar
  33. Harper DB, Hamilton JTG, Kennedy JT, McNally KJ (1989) Chloromethane, a novel methyl donor for biosynthesis of esters and anisoles in Phellinus pomaceus. Appl Environ Microbiol 55:1981–1989.PubMedGoogle Scholar
  34. Harper DB, Buswell JA, Kennedy JT, Hamilton JTG (1990) Chloromethane, methyl donor in veratryl alcohol biosynthesis in Phanerochaete chrysosporium and other lignin-degrading fungi. Appl Environ Microbiol 56:3450–3457.PubMedGoogle Scholar
  35. Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodégradation by Phanerochaete chrysosporium. Fed Eur Biol Socs Lett 195:242–246.CrossRefGoogle Scholar
  36. Harvey PJ, Palmer JM (1990) Oxidation of phenolic compounds by ligninase. J Biotechnol 13:169–179.CrossRefGoogle Scholar
  37. Higson FK (1991) Degradation of xenobiotics by white rot fungi. Environ Contam Toxicol 122:111–152.Google Scholar
  38. Jesseming T, Huang CP (1991) Photocatalytic oxidation process for the treatment of organic wastes. In: Eckerfelder WW, Bowers AR, Roth JA (eds) First International Symposium on Chemical Oxidation, Vanderbilt University, Nashville, TN, pp 262–277.Google Scholar
  39. Joshi DK, Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785.PubMedGoogle Scholar
  40. Kaplan DL, Kaplan AM (1982) Mutagenicity of 2,4,6-trinitrotoluene-surfactant complexes. Bull Environ Contam Toxicol 28:33–38.PubMedCrossRefGoogle Scholar
  41. Kelley RL, Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic culture of Phanerochaete chrysosporium. Arch Microbiol 144:248–253.CrossRefGoogle Scholar
  42. Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodégradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BK-M-F-1767). Appl Environ Microbiol 56:2347–2353.PubMedGoogle Scholar
  43. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H202 production by Phanerochaete chrysosporium. J Bacteriol 169: 2195–2201.PubMedGoogle Scholar
  44. Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: Its role, characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87: 2936–2940.PubMedCrossRefGoogle Scholar
  45. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase, and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480.PubMedGoogle Scholar
  46. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285.CrossRefGoogle Scholar
  47. Kirk TK, Shimada M (1985) Lignin biodégradation: The microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Biosynthesis and Biodégradation of Wood Compounds. Academic Press Inc, San Diego, pp 579–605.Google Scholar
  48. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain. Enz Microb Technol 8:27–32.CrossRefGoogle Scholar
  49. Kirk TK, Farrell RL (1987) Enzyme “combustion”: The microbial degradation of lignin. Ann Rev Microbiol 41:465–505.CrossRefGoogle Scholar
  50. Kirk TK, Lamar RT, Glaser JA (1992) The potential of white rot fungi in bioremediation. In: Mongkolsuk S, Lovett PS, Trempy JE (eds) Biotechnology and Environmental Science—Molecular Approaches. Plenum Press, New York, pp 131–138.CrossRefGoogle Scholar
  51. Knowles CJ (1976) Microorganisms and cyanide. Bacteriol Rev 40:652–680.PubMedGoogle Scholar
  52. Kochany J, Bolton JR (1992) Mechanism of photodegradation of aqueous organic pollutants. Measurement of primary rate constants for reaction of OH radicals with benzene and some halobenzenes in using EPR spin trapping method following photolysis of H202. Environ Sci Technol 26:262–265.CrossRefGoogle Scholar
  53. Koenigs JW (1974) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch Microbiol 99:129–145.CrossRefGoogle Scholar
  54. Kohler A, Jager A, Willershausen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium Burdsall has no role in the degradation of DDT. Appl Microbiol Biotechnol 29:618–620.CrossRefGoogle Scholar
  55. Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodégradation. Proc Natl Acad Sci USA 90:1242–1246.PubMedCrossRefGoogle Scholar
  56. Mileski G J, Bumpus J A, Jurek MA, Aust SD (1988) Biodégradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889.PubMedGoogle Scholar
  57. Nakajima R, Hoshino N, Yamazaki I (1991) Oxidative decomposition of oxyperoxidase during peroxidase reactions—Effect of localization of the enzyme. In: Lobarezewski J, Greppin H, Penel C, Gaspar Th (eds) Biochemical, molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, Switzerland, pp 89–97.Google Scholar
  58. Nay MW, Randall CW, King PH (1974) Biological treatability of trinitrotoluene manufacturing waste water. J Water Pollut Control Fed 46:485–497.PubMedGoogle Scholar
  59. Ollika P, Alhonmaki K, Leppanen VM, Glumoff T, Raijola T, Suominea I (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016.Google Scholar
  60. Popp JL, Kalyanaraman B, Kirk TK (1990) Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry 29:10475–10480.PubMedCrossRefGoogle Scholar
  61. Ruckdeshel G, Renner G (1986) Effect of pentachlorophenol and some of its known and possible metabolites on fungi. Appl Environ Microbiol 53:2689–2692.Google Scholar
  62. Sarkanen KV, Ludwig CH (1971) In: Lignins: Occurrences, Formation and Structure. Wiley-Interscience, New York, pp 1–8.Google Scholar
  63. Schoemaker HE (1990) On the chemistry of lignin biodégradation. Reel Trav Chim Pays-Bas 109:255–272.CrossRefGoogle Scholar
  64. Schott S, Ruchhoft CC, Megregian S (1943) TNT wastes. Ind Eng Chem 35:1122–1127.CrossRefGoogle Scholar
  65. Sedlak DL, Andren AW (1991) Aqueous-phase oxidation of polychlorinated biphe- nyls by hydroxyl radicals. Environ Sci Technol 25:1419–1426.CrossRefGoogle Scholar
  66. Shah MM, Grover TA, Barr DP, Aust SD (1992) On the mechanism of the inhibition of the veratryl alcohol oxidase activity of lignin peroxidase by EDTA. J Biol Chem 267:21564–21569.PubMedGoogle Scholar
  67. Shah MM, Aust SD (1993) Degradation of cyanide by the white rot fungus Phanero¬chaete chrysosporium. In: Tedder DW (ed) Emerging technologies for hazardous waste management. ACS Symp Ser 518:191–202.CrossRefGoogle Scholar
  68. Shah MM, Grover TA, Aust SD (1993) Reduction of CC14 to the trichloromethyl radical by lignin peroxidase H2 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 191:887–892.PubMedCrossRefGoogle Scholar
  69. Shimada M, Nakatsubo F, Kirk TK, Higuchi T (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch Microbiol 129:321–324.CrossRefGoogle Scholar
  70. Simic MG (1990) Pulse radiolysis in study of oxygen radicals. Meth Enzymol 186: 89–100.PubMedCrossRefGoogle Scholar
  71. Sollod CC, Jenns AE, Daub ME (1992) Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl Environ Microbiol 58: 444–449.PubMedGoogle Scholar
  72. Stahl JD, Aust SD (1993a) Plasma-membrane-dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192: 471–476.PubMedCrossRefGoogle Scholar
  73. Stahl JD, Aust SD (1993B) Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192:477–482.CrossRefGoogle Scholar
  74. Takao S (1965) Organic acid production by basidiomycetes I. Screening of acid producing strains. Appl Microbiol 13:732–737.Google Scholar
  75. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663.PubMedCrossRefGoogle Scholar
  76. Tien M, Kirk TK, Bull C, Fee JA (1984) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium burds. J Biol Chem 261:1687–1693.Google Scholar
  77. Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and possible applications. CRC Crit Rev Microbiol 15:141–168.CrossRefGoogle Scholar
  78. Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: Purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279:158–166.PubMedCrossRefGoogle Scholar
  79. Tuisel H, Grover TA, Bumpus JA, Aust SD (1992) Inhibition of veratryl alcohol oxidase activity of lignin peroxidase H2 by 3-amino-l,2,4-triazole. Arch Biochem Biophys 293:287–291.PubMedCrossRefGoogle Scholar
  80. Wariishi H, Gold MH (1989) Lignin-peroxidase compound III: Formation, inactivation, and conversion to the native enzyme. Fed Eur Biol Socs Lett 243:165–168.CrossRefGoogle Scholar
  81. Wariishi H, Gold MH (1990) Lignin-peroxidase compound III: Mechanism of formation and decomposition. J Biol Chem 265:2070–2077.PubMedGoogle Scholar
  82. Westermark U, Eriksson KE (1974) Cellobiose quinone oxidoreductase, a new wood degrading enzyme from white rot fungi. Acta Chem Scand 28:209–214.CrossRefGoogle Scholar
  83. Yamazaki I, Piette LH (1963) The mechanism of aerobic oxidase reaction catalyzed by peroxidase. Biochim Biophys Acta 77:47–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • David P. Barr
    • 1
  • Steven D. Aust
    • 1
  1. 1.Biotechnology CenterUtah State UniversityLoganUSA

Personalised recommendations