New Developments in Uniform Pseudorandom Number and Vector Generation

  • Harald Niederreiter
Part of the Lecture Notes in Statistics book series (LNS, volume 106)

Abstract

A survey of recent and new developments in the areas of uniform pseudorandom number and uniform pseudorandom vector generation is presented. The emphasis is on generators for which a detailed theoretical analysis is available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Afflerbach and H. Grothe, The lattice structure of pseudo-random vectors generated by matrix generators, J. Comp. Appl. Math. 23, 127 – 131 (1988)MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S. Aluru, G.M. Prabhu, and J. Gustafson, A random number generator for parallel computers, Parallel Comput. 18, 839 – 847 (1992)MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    S.L. Anderson, Random number generators on vector supercomputers and other advanced architectures, SIAM Rev. 32, 221 – 251 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D.A. André, G.L. Mullen, and H. Niederreiter, Figures of merit for digital multistep pseudorandom numbers, Math. Comp. 54, 737 – 748 (1990)MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. Auer and P. Hellekalek, Independence of uniform pseudorandom numbers, part I: the theoretical background, Proc. Internat. Workshop Parallel Numerics ’94(M. Vajteršic and P. Zinterhof, eds.), pp. 44 – 58, Slovak Academy of Sciences, Bratislava, 1994Google Scholar
  6. [6]
    T. Auer and P. Hellekalek, Independence of uniform pseudorandom numbers, part II: empirical results, Proc. Internat. Workshop Parallel Numerics ’94(M. Vajteršic and P. Zinterhof, eds.), pp. 59 – 73, Slovak Academy of Sciences, Bratislava, 1994Google Scholar
  7. [7]
    A. Baya, Contribution à la génération de vecteurs aléatoires et à la cryptographie, Thèse, Université de Grenoble, 1990Google Scholar
  8. [8]
    V.C. Bhavsar and J.R. Isaac, Design and analysis of parallel Monte Carlo algorithms, SIAM J. Sci. Statist. Comput. 8, s73 – s95 (1987)MathSciNetCrossRefGoogle Scholar
  9. [9]
    R.P.Brent, On the periods of generalized Fibonacci recurrences, Math Comp. 63, 389 – 401 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    W.-S. Chou, The period lengths of inversive pseudorandom vector generations, Fi-nite Fields and Their Appl. 1, 126 – 132 (1995)CrossRefGoogle Scholar
  11. [11]
    W.-S. Chou, The period lengths of inversive congruential recursions, Acta Arith., to appearGoogle Scholar
  12. [12]
    W.-S. Chou, On inversive maximal period polynomials over finite fields, Appl. Al-gebra Engrg. Comm. Comput., to appearGoogle Scholar
  13. [13]
    W.-S. Chou and H. Niederreiter, On the lattice test for inversive congruential pseu-dorandom numbers, this volumeGoogle Scholar
  14. [14]
    K.L. Chung, An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67, 36 – 50 (1949)MathSciNetMATHGoogle Scholar
  15. [15]
    B.J. Collings, Compound random number generators, J. Amer. Statist. Assoc. 82, 525 – 527 (1987)Google Scholar
  16. [16]
    R. Couture and P. L’Ecuyer, On the lattice structure of certain linear congruential sequences related to AWC/SWB generators, Math. Comp. 62, 799 – 808 (1994)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R. Couture and P. L#x2019;Ecuyer, Orbits and lattices for linear random number generators with composite moduli, Math. Comp., to appearGoogle Scholar
  18. [18]
    R. Couture, P. L#x2019;Ecuyer, and S. Tezuka, On the distribution of k-dimensional vectors for simple and combined Tausworthe sequences, Math. Comp. 60, 749 – 761, S11 – S16 (1993)MathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Dagpunar, Principles of Random Variate Generation, Clarendon Press, Oxford,1988MATHGoogle Scholar
  20. [20]
    I. Deák, Random Number Generators and Simulation, Akadémiai Kiadó, Budapest,1989Google Scholar
  21. [21]
    A. de Matteis, J. Eichenauer-Herrmann, and H. Grothe, Computation of critical dis-tances within multiplicative congruential pseudorandom number sequences, J. Comp. Appl. Math. 39, 49 – 55 (1992)MATHCrossRefGoogle Scholar
  22. [22]
    A. de Matteis and S. Pagnutti, Parallelization of random number generators and long-range correlations, Numer. Math. 53, 595 – 608 (1988)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    L.Y. Deng, E.O. George, and Y.C. Chu, On improving pseudo-random number generators, Proc. 1991 Winter Simulation Conf (G.M. Clark etal., eds.), pp. 1035 – 1042, IEEE Press, Piscataway, NJ, 1991CrossRefGoogle Scholar
  24. [24]
    U. Dieter, Probleme bei der Erzeugung gleichverteilter Zufallszahlen, Zufallszahlen und Simulationen(L. Afflerbach and J. Lehn, eds.), pp. 7 – 20, Teubner, Stuttgart, 1986Google Scholar
  25. [25]
    U. Dieter, Erzeugung von gleichverteilten Zufallszahlen, Jahrbuch Überblicke Mathematik 1993, pp. 25 – 44, Vieweg, Braunschweig, 1993Google Scholar
  26. [26]
    W.F. Eddy, Random number generators for parallel processors, J. Comp. Appl. Math. 31, 63 –71 (1990)MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    J. Eichenauer, H. Grothe, and J. Lehn, Marsaglia’s lattice test and non-linear con-gruential pseudo random number generators, Metrika 35, 241 – 250 (1988)MATHCrossRefGoogle Scholar
  28. [28]
    J. Echenauer, H. Grothe, J. Lehn, and A. Topuzoğlu, A multiple recursive non-linear congruential pseudo random number generator, Manuscripta Math. 59, 331 – 346 (1987)MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number gen-erator, Statist. Papers27, 315 – 326 (1986)MathSciNetMATHGoogle Scholar
  30. [30]
    J. Eichenauer and J. Lehn, On the structure of quadratic congruential sequences, Manuscripta Math. 58, 129 –ğ 140 (1987)MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    J. Eichenauer, J. Lehn, and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51, 757 – 759 (1988)MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    J. Eichenauer and H. Niederreiter, On Marsaglia’s lattice test for pseudorandom numbers, Manuscripta Math. 62, 245 – 248 (1988)MathSciNetMATHGoogle Scholar
  33. [33]
    J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56, 297 – 301 (1991)MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    J. Eichenauer-Herrmann, On the discrepancy of inversive congruential pseudoran-dom numbers with prime power modulus, Manuscripta Math. 71, 153 – 161 (1991)MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60, 167 – 176 (1992)MATHCrossRefGoogle Scholar
  36. [36]
    J. Eichenauer-Herrmann, Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comp. Appl. Math. 40, 345 – 349 (1992)MathSciNetMATHGoogle Scholar
  37. [37]
    J. Eichenauer-Herrmann, On the autocorrelation structure of inversive congruential pseudorandom number sequences, Statist. Papers33, 261 – 268 (1992)MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    J. Eichenauer-Herrmann, A remark on the discrepancy of quadratic congruential pseudorandom numbers, J. Comp. Appl. Math. 43, 383 – 387 (1992)MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    J. Eichenauer-Herrmann, Statistical independence of a new class of inversive con-gruential pseudorandom numbers, Math. Comp. 60, 375 – 384 (1993)MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    J. Eichenauer-Herrmann, The lattice structure of nonlinear congruential pseudoran-dom numbers, Metrika40, 115 – 120 (1993)MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    J. Eichenauer-Herrmann, On the discrepancy of inversive congruential pseudoran-dom numbers with prime power modulus, II, Manuscripta Math. 79, 239 – 246 (1993)MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers, Z. angew. Math. Mech. 73, T644 – T647 (1993)MathSciNetMATHGoogle Scholar
  43. [43]
    J. Eichenauer-Herrmann, Equidistribution properties of nonlinear congruential pseudorandom numbers, Metrika40, 333 – 338 (1993)MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    J. Eichenauer-Herrmann, Explicit inversive congruential pseudorandom numbers: the compound approach, Computing51, 175 – 182 (1993)MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    J. Eichenauer-Herrmann, Improved lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 62, 783 – 786 (1994)MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    J. Eichenauer-Herrmann, Compound nonlinear congruential pseudorandom num-bers, Monatsh Math. 117, 213 – 222 (1994)MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    J. Eichenauer-Herrmann, On generalized inversive congruential pseudorandom num-bers, Math. Comp. 63, 293 – 299 (1994)MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    J. Eichenauer-Herrmann, Pseudorandom number generation by nonlinear methods, Internat. Statist. Rev., to appearGoogle Scholar
  49. [49]
    J. Eichenauer-Herrmann, On the discrepancy of quadratic congruential pseudoran-dom numbers with power of two modulus, J. Comp. Appl. Math. 53, 371 – 376 (1994)MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    J. Eichenauer-Herrmann, Quadratic congruential pseudorandom numbers: distribu-tion of triples, J. Comp. Appl. Math., to appearGoogle Scholar
  51. [51]
    J. Eichenauer-Herrmann, A unified approach to the analysis of compound pseudo-random numbers, Finite Fields and Their Appl. 1, 102 – 114 (1995)MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    J. Eichenauer-Herrmann, Nonoverlapping pairs of explicit inversive congruential pseudorandom numbers, Monatsh. Math. 119, 49 – 61 (1995)MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    J. Eichenauer-Herrmann, Modified explicit inversive congruential pseudorandom numbers with power of two modulus, Statistics and Computing, to appearGoogle Scholar
  54. [54]
    J. Eichenauer-Herrmann, Quadratic congruential pseudorandom numbers: distribu-tion of triples, II, J. Comp. Appl. Math., to appearGoogle Scholar
  55. [55]
    J. Eichenauer-Herrmann, Discrepancy bounds for nonoverlapping pairs of quadratic congruential pseudorandom numbers, preprintGoogle Scholar
  56. [56]
    J. Eichenauer-Herrmann, Modified explicit inversive congruential pseudorandom numbers with power of two modulus, II, preprintGoogle Scholar
  57. [57]
    J. Eichenauer-Herrmann and F. Emmerich, Compound inversive congruential pseu-dorandom numbers: an average-case analysis, Math. Comp., to appearGoogle Scholar
  58. [58]
    J. Eichenauer-Herrmann and H. Grothe, A remark on long-range correlations in multiplicative congruential pseudo random number generators, Numer. Math. 56, 609 – 611 (1989)MathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    J. Eichenauer-Herrmann and H. Grothe, A new inversive congruential pseudoran-dom number generator with power of two modulus, ACM Trans. Modeling and Com-puter Simulation2, 1 - 11 (1992)MATHCrossRefGoogle Scholar
  60. [60]
    J. Eichenauer-Herrmann, H. Grothe, and J. Lehn, On the period length of pseudo-random vector sequences generated by matrix generators, Math. Comp. 52, 145 – 148 (1989)MathSciNetCrossRefGoogle Scholar
  61. [61]
    J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter, and A. Topuzoğlu, On the lattice structure of a nonlinear generator with modulus 2σ, J. Comp. Appl. Math. 31, 81 – 85 (1990)MATHCrossRefGoogle Scholar
  62. [62]
    J. Eichenauer-Herrmann and K. Ickstadt, Explicit inversive congruential pseudo-random numbers with power of two modulus, Math. Comp. 62, 787 – 797 (1994)MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    J. Eichenauer-Herrmann and H. Niederreiter, On the discrepancy of quadratic con-gruential pseudorandom numbers, J. Comp. Appl. Math. 34, 243 – 249 (1991)MathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    J. Eichenauer-Herrmann and H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 58, 775 – 779 (1992)MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    J. Eichenauer-Herrmann and H. Niederreiter, Kloosterman-type sums and the dis-crepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers, Acta Arith. 65, 185 – 194 (1993)MathSciNetMATHGoogle Scholar
  66. [66]
    J. Eichenauer-Herrmann and H. Niederreiter, On the statistical independence of nonlinear congruential pseudorandom numbers, ACM Trans. Modeling and Computer Simulation4, 89 – 95 (1994)MATHCrossRefGoogle Scholar
  67. [67]
    J. Eichenauer-Herrmann and H. Niederreiter, Bounds for exponential sums and their applications to pseudorandom numbers, Acta Arith. 67, 269 – 281 (1994)MathSciNetMATHGoogle Scholar
  68. [68]
    J. Eichenauer-Herrmann and H. Niederreiter, Digital inversive pseudorandom num-bers, ACM Trans. Modeling and Computer Simulation, to appearGoogle Scholar
  69. [69]
    J. Eichenauer-Herrmann and H. Niederreiter, An improved upper bound for the discrepancy of quadratic congruential pseudorandom numbers, Acta Arith. 69, 193 – 198 (1995)MathSciNetMATHGoogle Scholar
  70. [70]
    J. Eichenauer-Herrmann and A. Topuzoğlu, On the period length of congruential pseudorandom number sequences generated by inversions, J. Comp. Appl Math. 31, 87 – 96 (1990)MATHCrossRefGoogle Scholar
  71. [71]
    F. Emmerich, Pseudorandom vector generation by the compound inversive method, Math. Comp., to appearGoogle Scholar
  72. [72]
    A.M. Ferrenberg, D.P. Landau, and Y.J. Wong, Monte Carlo simulations: hidden errors from “good” random number generators, Physical Review Letters69, 3382 – 3384 (1992)CrossRefGoogle Scholar
  73. [73]
    G.S. Fishman, Multiplicative congruential random number generators with modulus 2β: an exhaustive analysis for β = 32 and a partial analysis for β = 48, Math. Comp. 54, 331 – 344 (1990)MathSciNetMATHGoogle Scholar
  74. [74]
    M. Flahive and H. Niederreiter, On inversive congruential generators for pseudo-random numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing(G.L. Mullen and P.J.-S. Shiue, eds.), pp. 75 – 80, Dekker, New York, 1993Google Scholar
  75. [75]
    M. Fushimi, An equivalence relation between Tausworthe and GFSR sequences and applications, Applied Math. Lett. 2, 135 – 137 (1989)MathSciNetMATHCrossRefGoogle Scholar
  76. [76]
    M. Fushimi, Random number generation with the recursion Xt = Xt-3P ⊕ Xt-3q, J. Comp. Appl Math. 31, 105 – 118 (1990)MathSciNetMATHCrossRefGoogle Scholar
  77. H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren, Zufallszahlen und Simulationen(L. Afflerbach and J. Lehn, eds.), pp. 29 – 34, Teubner, Stuttgart, 1986Google Scholar
  78. [78]
    H. Grothe, Matrix generators for pseudo-random vector generation, Statist. Papers28, 233 – 238 (1987)MathSciNetMATHGoogle Scholar
  79. [79]
    H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteilter Pseudozufallsvektoren, Dissertation, Technische Hochschule Darmstadt, 1988MATHGoogle Scholar
  80. [80]
    A. Grube, Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen, Z. angew. Math. Mech. 53, T223 – T225 (1973)MathSciNetGoogle Scholar
  81. [81]
    P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67, 209 – 218 (1994)MathSciNetMATHGoogle Scholar
  82. [82]
    K. Huber, On the period length of generalized inversive pseudorandom number generators, Appl. Algebra Engrg. Comm. Comput. 5, 255 – 260 (1994)MathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    F. James, A review of pseudorandom number generators, Computer Physics Comm. 60, 329 – 344 (1990)MATHCrossRefGoogle Scholar
  84. [84]
    T. Kato, L.-M. Wu, and N. Yanagihara, On a nonlinear congruential pseudorandom number generator, preprint, 1994Google Scholar
  85. [85]
    T. Kato, L.-M. Wu, and N. Yanagihara, The serial test for a nonlinear pseudorandom number generator, preprint, 1994Google Scholar
  86. [86]
    J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11, 649 – 660 (1961)MathSciNetMATHGoogle Scholar
  87. [87]
    D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981MATHGoogle Scholar
  88. [88]
    P. L’Ecuyer, Efficient and portable combined random number generators, Comm. ACM31, 742 – 749, 774 (1988)MathSciNetCrossRefGoogle Scholar
  89. [89]
    P. L’Ecuyer, Random numbers for simulation, Comm. ACM$133, no. 10, 85 – 97 (1990)CrossRefGoogle Scholar
  90. [90]
    P. L’Ecuyer, Uniform random number generation, Ann. Oper. Res. 53, 77 – 120 (1994)MathSciNetMATHCrossRefGoogle Scholar
  91. [91]
    P. L’Ecuyer, Bad lattice structures for vectors of non-successive values produced by some linear recurrences, ORSA J. Computing, to appearGoogle Scholar
  92. [92]
    P. L’Ecuyer, Combined multiple recursive random number generators, Oper. Res., to appearGoogle Scholar
  93. [93]
    P. L’Ecuyer, Maximally equidistributed combined Tausworthe generators, Math. Comp., to appearGoogle Scholar
  94. [94]
    P. L’Ecuyer, F. Blouin, and R. Couture, A search for good multiple recursive random number generators, ACM Trans. Modeling and Computer Simulation3, 87 – 98 (1993)MATHCrossRefGoogle Scholar
  95. [95]
    P. L’Ecuyer and S. Tezuka, Structural properties for two classes of combined random number generators, Math. Comp. 57, 735 – 746 (1991)MathSciNetMATHCrossRefGoogle Scholar
  96. [96]
    J. Lehn, Pseudorandom number generators, Operations Research 91(P. Gritzmann etal., eds.), pp. 9 – 13, Physica-Verlag, Heidelberg, 1992Google Scholar
  97. [97]
    J. Lehn, Special methods for pseudorandom number generation, Bootstrapping and Related Techniques(Trier, 1990), Lecture Notes in Economics and Math. Systems, Vol. 376, pp. 13 – 19, Springer, Berlin, 1992Google Scholar
  98. [98]
    M.B. Levin, On the choice of parameters in generators of pseudorandom numbers (Russian), Dokl. Akad. Nauk SSSR307, 529 – 534 (1989)Google Scholar
  99. [99]
    Yu.L. Levitan and I.M. Sobol’, On a pseudo-random number generator for personal computers (Russian), Matem. Modelirovanie$12, no. 8, 119 – 126 (1990)MathSciNetMATHGoogle Scholar
  100. [100]
    R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge University Press, Cambridge, 1994MATHGoogle Scholar
  101. [101]
    G. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. U.S.A. 61, 25 – 28 (1968)MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    G. Marsaglia, The structure of linear congruential sequences, Applications of Num-ber Theory to Numerical Analysis (S.K. Zaremba, ed.), pp. 249 – 285, Academic Press, New York, 1972Google Scholar
  103. [103]
    G. Marsaglia, The mathematics of random number generators, The Unreasonable Effectiveness of Number Theory(S.A. Burr, ed.), Proc. Symp. Applied Math., Vol. 46, pp. 73 – 90, American Math. Society, Providence, RI, 1992Google Scholar
  104. [104]
    G. Marsaglia and A. Zaman, A new class of random number generators, Ann. Appl. Probab. 1, 462 – 480 (1991)MathSciNetMATHCrossRefGoogle Scholar
  105. [105]
    M. Matsumoto and Y. Kurita, Twisted GFSR generators, ACM Trans. Modeling and Computer Simulation2, 179 – 194 (1992)MATHCrossRefGoogle Scholar
  106. [106]
    G.L. Mullen, A note on a finite field pseudorandom vector generator of Niki, Math. Japon. 38, 59 – 60 (1993)MathSciNetMATHGoogle Scholar
  107. [107]
    H. Niederreiter, The serial test for pseudo-random numbers generated by the linear congruential method, Numer. Math. 46, 51 – 68 (1985)Google Scholar
  108. [108]
    H. Niederreiter, A pseudorandom vector generator based on finite field arithmetic, Math. Japon. 31, 759 – 774 (1986)MathSciNetMATHGoogle Scholar
  109. [109]
    H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104, 273 – 337 (1987)MathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    H. Niederreiter, Remarks on nonlinear congruential pseudorandom numbers, Metrika 35, 321 – 328 (1988)MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    H. Niederreiter, Statistical independence of nonlinear congruential pseudorandom numbers, Monatsh. Math. 106, 149 – 159 (1988)MathSciNetMATHCrossRefGoogle Scholar
  112. [112]
    H. Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52, 135 – 144 (1989)MathSciNetMATHCrossRefGoogle Scholar
  113. [113]
    H. Niederreiter, Pseudorandom numbers generated from shift register sequences, Number-Theoretic Analysis (E. Hlawka and R.F. Tichy, eds.), Lecture Notes in Math., Vol. 1452, pp. 165 – 177, Springer, Berlin, 1990Google Scholar
  114. [114]
    H. Niederreiter, Statistical independence properties of pseudorandom vectors pro-duced by matrix generators, J. Comp. Appl. Math. 31, 139 – 151 (199MathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    H. Niederreiter, Lower bounds for the discrepancy of inversive congruential pseu-dorandom numbers, Math. Comp. 55, 277 – 287 (1990)MathSciNetMATHCrossRefGoogle Scholar
  116. [116]
    H. Niederreiter, Finite fields and their applications, Contributions to General Al-gebra 7(Vienna, 1990), pp. 251 – 264, Teubner, Stuttgart, 1991Google Scholar
  117. [117]
    H. Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31, 323 – 345 (1991)MathSciNetMATHCrossRefGoogle Scholar
  118. [118]
    H. Niederreiter, Nonlinear methods for pseudorandom number and vector genera-tion, Simulation and Optimization(G. Pflug and U. Dieter, eds.), Lecture Notes in Economics and Math. Systems, Vol. 374, pp. 145 – 153, Springer, Berlin, 1992Google Scholar
  119. [119]
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992MATHGoogle Scholar
  120. [120]
    H. Niederreiter, New methods for pseudorandom number and pseudorandom vector generation, Proc. 1992 Winter Simulation Conf. (J.J. Swain etal., eds.), pp. 264 – 269, IEEE Press, Piscataway, NJ, 1992Google Scholar
  121. [121]
    H. Niederreiter, Finite fields, pseudorandom numbers, and quasirandom points, Fi-nite Fields, Coding Theory, and Advances in Communications and Computing(G.L. Mullen and P.J.-S. Shiue, eds.), pp. 375 – 394, Dekker, New York, 1993Google Scholar
  122. [122]
    H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. angew. Math. Mech. 73, T648 – T652 (1993)MathSciNetMATHGoogle Scholar
  123. [123]
    H. Niederreiter, Factorization of polynomials and some linear-algebra problems over finite fields, Linear Algebra Appl 192, 301 – 328 (1993)MathSciNetMATHCrossRefGoogle Scholar
  124. [124]
    H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling and Computer Simulation 4, 191 – 212 (1994)MATHCrossRefGoogle Scholar
  125. [125]
    H. Niederreiter, On a new class of pseudorandom numbers for simulation methods, J. Comp. Appl. Math., to appearGoogle Scholar
  126. [126]
    H. Niederreiter, The multiple-recursive matrix method for pseudorandom number generation, Finite Fields and Their Appl. 1, 3 – 30 (1995)MathSciNetMATHCrossRefGoogle Scholar
  127. [127]
    H. Niederreiter, Pseudorandom vector generation by the multiple-recursive matrix method, Math. Comp. 64, 279 – 294 (1995)MathSciNetMATHCrossRefGoogle Scholar
  128. [127]
    N. Niki, Finite field arithmetics and multidimensional uniform pseudorandom num-bers (Japanese), Proc. Inst. Statist. Math. 32, 231 – 239 (1984)MathSciNetMATHGoogle Scholar
  129. [129]
    J.D. Parker, The period of the Fibonacci random number generator, Discrete Appl Math. 20, 145 – 164 (1988)MathSciNetMATHCrossRefGoogle Scholar
  130. [130]
    O.E. Percus and J.K. Percus, Long range correlations in linear congruential generators, J. Comp. Physics 77, 267 – 269 (1988)MathSciNetMATHCrossRefGoogle Scholar
  131. [131]
    O.E. Percus and J.K. Percus, Intrinsic relations in the structure of linear congru-ential generators modulo 2ß, Statist. Probab. Lett. 15, 381 – 383 (1992)MathSciNetMATHCrossRefGoogle Scholar
  132. [132]
    Y.S. Sherif and R.G. Dear, Development of a new composite pseudo random num-ber generator, Microelectronics and Reliability 30, 545 – 553 (1990)CrossRefGoogle Scholar
  133. [133]
    I.E. Shparlinskii, A sequence of pseudorandom numbers (Russian), Avtomat. i Telemekh. 7, 185 – 188 (1988)MathSciNetGoogle Scholar
  134. [134]
    E.A.D.E. Tahmi, Contribution aux générateurs de vecteurs pseudo-aléatoires, Thèse, Univ. Sci. Techn. H. Boumedienne, Algiers, 1982Google Scholar
  135. [135]
    S. Tezuka, Walsh-spectral test for GFSR pseudorandom numbers, Comm. ACM 30, 731–735 (1987)MathSciNetMATHCrossRefGoogle Scholar
  136. [136]
    S. Tezuka, On the discrepancy of GFSR pseudorandom numbers, J. Assoc. Comput. Mach. 34, 939–949 (1987)MathSciNetMATHGoogle Scholar
  137. [137]
    S. Tezuka, Lattice structure of pseudorandom sequences from shift register gener-ators, Proc. 1990 Winter Simulation Conf. (R.E. Nance etal., eds.), pp. 266–269, IEEE Press, Piscataway, NJ, 1990CrossRefGoogle Scholar
  138. [138]
    S. Tezuka, The k-dimensional distribution of combined GFSR sequences, Math. Comp. 62, 809–817 (1994)MathSciNetMATHGoogle Scholar
  139. [139]
    S. Tezuka and M. Fushimi, Calculation of Fibonacci polynomials for GFSR se-quences with low discrepancies, Math. Comp. 60, 763–770 (1993)MathSciNetMATHCrossRefGoogle Scholar
  140. [140]
    S. Tezuka and P. L’Ecuyer, Efficient and portable combined Tausworthe ran-dom number generators, ACM Trans. Modeling and Computer Simulation 1, 99–112 (1991)MATHCrossRefGoogle Scholar
  141. [141]
    S. Tezuka and P. L’Ecuyer, Analysis of add-with-carry and subtract-with-borrow generators, Proc. 1992 Winter Simulation Conf. (J.J. Swain etal., eds.), pp. 443–447, IEEE Press, Piscataway, NJ, 1992Google Scholar
  142. [142]
    S. Tezuka, P. L’Ecuyer, and R. Couture, On the lattice structure of the add-with- carry and subtract-with-borrow random number generators, ACM Trans. Modeling and Computer Simulation3, 315–331 (1993)MATHCrossRefGoogle Scholar
  143. [143]
    D. Wang and A. Compagner, On the use of reducible polynomials as random number generators, Math. Comp. 60, 363–374 (1993)MathSciNetMATHCrossRefGoogle Scholar
  144. B.A. Wichmann and I.D. Hill, An efficient and portable pseudo-random number generator, Appl. Statist. 31, 188–190 (1982); Corrections, ibid. 33, 123 (1984)Google Scholar
  145. [145]
    B.A. Wichmann and I.D. Hill, Building a random-number generator, Byte 12, no. 3, 127–128 (1987)Google Scholar
  146. [146]
    W.W. Wood, Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble, J. Chemical Physics48, 415–434 (1968)CrossRefGoogle Scholar
  147. [147]
    C.-K. Yuen, Testing random number generators by Walsh transform, IEEE Trans. Comput. 26, 329–333 (1977)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Institute for Information ProcessingAustrian Academy of SciencesViennaAustria

Personalised recommendations