Skip to main content

Measurements of Environmental Lead Contamination and Human Exposure

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 143))

Abstract

The enormous magnitude and extent of environmental and human lead contamination has become apparent over the last three decades, while the harmful effects of lead contamination on human and environmental health still may not yet be fully realized (Needleman 1992; NRC 1993; USEPA 1986). Lead contamination of the biosphere has occurred on a global scale for hundreds if not thousands of years, and despite efforts by many industrialized nations to reduce some lead emissions (e.g., lead alkyls in gasoline), lead production worldwide continues to increase (U.S. Bureau of Mines 1992). Much of our current state of knowledge on the magnitude of contaminant lead in the environment and on its toxicity at low levels of exposure has been derived from recent analyses using more sensitive analytical and clinical measurement of lead and its effects on organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Modhefer AJ, Bradbury MW, Simons TJ (1991) Observations on the chemical nature of lead in human blood serum. Clin Sci 81:823–829.

    PubMed  CAS  Google Scholar 

  • Ahlgren L, Liden K, Mattsson S, Tejning S (1976) X-ray fluorescence analysis of lead in human skeleton in vivo. Scand J Work Environ Health 2:82–286.

    PubMed  CAS  Google Scholar 

  • Alessio L (1988) Relationship between “chelatable level” and the indicators of exposure and effect in current and past occupational exposure. Sci Total Environ 71: 293–299.

    PubMed  CAS  Google Scholar 

  • Amarasiriwardena CJ, Krushevska A, Foner H, Argentine MD, et al. (1992) Sample preparation for inductively coupled plasma mass spectrometric determination of the zinc-70 to zinc-68 isotope ratio in biological samples. J Anal At Spectrom 7(6):915–921.

    CAS  Google Scholar 

  • Angerer J, Schaller KH (eds) (1988) Analyses of Hazardous Substances in Biological Matrices, Vol 2. VCH Publishers, Weinheim.

    Google Scholar 

  • Angle CR, McIntire MS (1978) Low level lead inhibition of erythrocyte pyrimidine nucleotidase. Environ Res 17:296–302.

    PubMed  CAS  Google Scholar 

  • Arkowitz R, Hoehn-Berlage M, Gersonde K (1987) The effect of cadmium ions on 2,3-bisphosphoglycerate in erythrocytes studied with 31P NMR. FEBS Lett 217: 21–24.

    PubMed  CAS  Google Scholar 

  • Barnes IL, Gramlich JW, Diaz MG, Brill RH (1978) The possible change of lead isotope ratios in the manufacture of pigments: a fractionation experiment. In: Carter GF (ed) Archaeological Chemistry II. Advances in Chemistry Series, vol 171, American Chemical Society, Washington, DC, pp 273–277.

    Google Scholar 

  • Barnes RM (1990) Childhood soil ingestion: How much dirt do kids eat? Anal Chem 62:A1023–A1030.

    Google Scholar 

  • Barnes RM (1991) Inductively coupled and other plasma sources: determination and speciation of trace elements in biomedical applications. In: Subramanian KS, Iyengar GV, Okamoto K (eds) Biological Trace Element Research: Multidisciplinary Perspectives. ACS Series 445, American Chemical Society, Washington, DC, pp 158–180.

    Google Scholar 

  • Barry PSI (1975) A comparison of concentrations of lead in human tissue. Br J Ind Med 32:119–139.

    PubMed  CAS  Google Scholar 

  • Beauchemin D, McLaren JW, Berman SS (1988a) Use of external calibration for the determination of trace metals in biological materials by inductively coupled plasma mass spectrometry. J Anal At Spectrom 3:775–780.

    CAS  Google Scholar 

  • Beauchemin D, McLaren JW, Willie SN, Berman SS (1988b) Determination of trace metals in marine biological materials by inductively coupled plasma mass spectrometry. Anal Chem 60:687–691.

    CAS  Google Scholar 

  • Bellinger D, Leviton A, Waternaux C, et al. (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med 316:1037–1043.

    PubMed  CAS  Google Scholar 

  • Bellinger D, Sloman J, Leviton A, Rabinowitz M, Needleman HL, Waternaux C (1991) Low-level lead exposure and children’s cognitive function in the preschool years. Pediatrics 87:219–227. [Erratum: Pediatrics 93:A28 (1994).]

    PubMed  CAS  Google Scholar 

  • Berman SS, Sin KWM, Maxwell PS, Beauchemin D, Clancy VP (1989) Marine biological reference materials for methylmercury analytical methodologies used in certification. Fresenius Z Anal Chem 333:641–644.

    CAS  Google Scholar 

  • Bevington PR (1969) Data Reduction and Error Analyses for the Physical Sciences. McGraw-Hill, New York.

    Google Scholar 

  • Blaineau S, Amsellem J, Nicaise G (1988) Increase in the calcium content of cardiac tissue after postfixation with osmium tetroxide. Stain Technol 63:339–349.

    PubMed  CAS  Google Scholar 

  • Borguet F, Cornelis R, Lameire N (1990) Speciation of chromium in plasma and liver tissue of endstage renal failure patients on continuous ambulatory peritoneal dialysis. Biol Trace Elm Res 26–27:449–460.

    Google Scholar 

  • Boutron CF, Gorlach U, Candelone J-P, Bolshov M, Delmas R (1991) Concentrations of lead, copper, cadmium and zinc in Greenland snows since the late 1960s. Nature 353:153–156.

    CAS  Google Scholar 

  • Brody DJ, Pirkle JL, Kramer RA, Flegal KM, Matte TD, Gunter EW, Paschal DC (1994) Blood lead levels in the U.S. population. J Am Med Assoc 272:277–283.

    CAS  Google Scholar 

  • Brown A, Ebdon L, Hill S (1994) Development of a coupled liquid chromatography isotope dilution inductively coupled plasma mass spectrometry method for lead speciation. Anal Chim Acta 286:391–399.

    CAS  Google Scholar 

  • Brown RM, Pickford CJ (1985) Inductively coupled plasma-mass spectrometry: an individual assessment of the VG isotopes Plasmaquad. INS Atomindex 16 (Abstract 070138, Report AERE-M-3462).

    Google Scholar 

  • Bruland KW (1983) Trace elements in sea water. In: Riley JP, Chester R (eds) Chemical Oceanography, vol 8. Academic Press, New York, pp 157–220.

    Google Scholar 

  • Bruland KW, Coale KH, Mart L (1985) Analysis of seawater for dissolved cadmium, copper, and lead: An intercomparison of voltametric and atomic absorption methods. Mar Chem 17:285–300.

    CAS  Google Scholar 

  • Burnett MW, Patterson CC (1980) Perturbation of natural lead transport in nutrient calcium pathways of marine ecosystems by industrial lead. In: Goldberg E, Horibe Y, Saruhashi K (eds) Isotope Marine Chemistry. Uchida Rokakuho, Tokyo, pp 413–438.

    Google Scholar 

  • Bushee DS (1988) Speciation of mercury using liquid chromatography with detec- tion by inductively coupled plasma mass spectrometry. Analyst 113:1167–1170.

    CAS  Google Scholar 

  • Bushee DS, Moody JR, May JC (1990) Determination of thimerosal in biological products by liquid chromatography with inductively coupled plasma mass spectrometry detection. J Anal At Spectrom 4:773–775.

    Google Scholar 

  • Caplun E, Pettit D, Picciotto E (1984) Lead in petrol. Endeavor 8:135–144.

    CAS  Google Scholar 

  • Cardozo des Santos A, Colacciopo S, Dal Bo CMR, Guinaim dos Santos NA (1994) Occupational exposure to lead, kidney function tests, and blood pressure. Am J Ind Med 26:635–643.

    Google Scholar 

  • Centers for Disease Control (1991) Preventing lead poisoning in young children. A statement by the Centers for Disease Control, October, 1991. U.S. Department of Health and Human Services/Public Health Service/Centers for Disease Control, Washington, DC.

    Google Scholar 

  • Chisolm JJ Jr, Barltrop D (1979) Recognition and management of children with increased lead absorption. Arch Dis Child 54:249–262.

    PubMed  Google Scholar 

  • Chisolm JJ Jr, Mellitis ED, Quakskey SA (1985) The relationship between the level of lead absorption in children and the age, type, and condition of housing. Environ Res 38:31–45.

    PubMed  Google Scholar 

  • Christoffersson J, Schutz A, Ahlgren L, Haeger-Aronsen B, Mattsson S, Skerfving S (1984) Lead in finger-bone analyzed in vivo in active and retired lead workers. Am J Ind Med 6:447–457.

    PubMed  CAS  Google Scholar 

  • Church H, Day JP, Braithwaite R, Brown S (1993) Binding of lead to a metallothionein-like protein in human erythrocytes. J Inorg Biochem 49:55–68.

    PubMed  CAS  Google Scholar 

  • Church TM, Veron A, Patterson C, Settle D, Erel Y, Maring H, Flegal AR (1990) Trace elements in the north Atlantic troposphere: Shipboard results of precipitation and aerosols. Global Biogeochem Cycles 4:431–443.

    CAS  Google Scholar 

  • Cleland SL, Olson LK, Caruso JA (1994) Optimization of arsenic supercritical fluid extraction with detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom 9:975–980.

    CAS  Google Scholar 

  • Crews HM, Dean JR, Ebdon L, Massey RC (1989) Application of high-performance liquid chromatography-inductively coupled plasma spectrometry to the investigation of cadmium speciation in pig kidney following cooking and in vitro gastrointestinal digestion. Analyst 114:895–899.

    PubMed  CAS  Google Scholar 

  • Crick J, Flegal AR (1991) Contaminant lead in blood collection tubes for trace element studies. Clin Chem 38:600–601.

    Google Scholar 

  • Dalgarno BG, Brown RM, Pickford CJ (1988) Potential of inductively coupled plasma mass spectrometry for trace element metabolism studies in man. Biomed Environ Mass Spectrom 16:377–380.

    PubMed  CAS  Google Scholar 

  • Date AR, Chung YY (1987) Studies in the determination of lead isotopes by inductively coupled plasma mass spectrometry. Analyst 112:1531–1540.

    CAS  Google Scholar 

  • Date AR, Gray AL (eds) (1989) Applications of Inductively Coupled Plasma Mass Spectrometry. Chapman and Hall, New York.

    Google Scholar 

  • Dean J, Ebdon L, Massey R (1987) Selection of mode for the measurement of lead isotope ratios by inductively coupled plasma mass spectrometry and its application to milk powder analysis. J Anal At Spectrom 2:369–374.

    CAS  Google Scholar 

  • Delves HT, Campbell MJ (1988) Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry. J Anal At Spectrom 3:343–348.

    CAS  Google Scholar 

  • Dietrich KN, Succop PA, Berger OG, Keith RW (1992) Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati Lead Study cohort at age 5 years. Neurotoxicol Teratol 14: 51–56.

    PubMed  CAS  Google Scholar 

  • Dietrich KN, Berger OG, Succop PA (1993a) Lead exposure and the motor developmental status of urban six-year-old children in the Cincinnati Prospective Study. Pediatrics 91:301–307.

    CAS  Google Scholar 

  • Dietrich KN, Berger OG, Succop PA, Hammond PB, Bornschein RL (1993b) The developmental consequences of low to moderate prenatal and postnatal lead exposure: Intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol 15:37–44.

    CAS  Google Scholar 

  • Diver FS, Littlejohn DL, Lyon TDB, Fell GS (1988) Human albumin as a reference material for trace elements. Fresenius Z Anal Chem 332:627–629.

    CAS  Google Scholar 

  • Doe BR (1970) Lead Isotopes. Springer-Verlag, Berlin.

    Google Scholar 

  • Douglas DJ, Quan ESK, Smith RG (1983) Elemental analyses with an atmospheric pressure (MIP, ICP)/quadrupole mass spectrometer system. Spectrochim Acta 388:39–48.

    Google Scholar 

  • Douglas DJ, Houk RS (1985) Inductively-coupled plasma mass spectrometry (ICPMS). Prog Anal At Spectrosc 8:1–18.

    CAS  Google Scholar 

  • Dowd TL, Gupta RK (1991) 19F-NMR study of the effect of lead on intracellular free calcium in human platelets. Biochim Biophys Acta 1092:341–346.

    PubMed  CAS  Google Scholar 

  • Drüeke T (1980) Dialysis osteomalacia and aluminum intoxication. Nephron 26: 207–210.

    PubMed  Google Scholar 

  • Duckworth HE, Barber RC, Venkatasubramanian V (eds) (1986) Mass Spectrometry, 2nd ed. Cambridge University Press, New York.

    Google Scholar 

  • Ebdon L, Hill S, Ward R (1986) Directly coupled chromatography-atomic spectroscopy. Part 1: Directly coupled gas chromatography-atomic spectroscopy. Analyst 111:1113–1138.

    CAS  Google Scholar 

  • Ebdon L, Hill S, Ward W (1987) Directly coupled chromatography-atomic spectroscopy. Part 2: Directly coupled liquid chromatography-atomic spectroscopy. Analyst 112:1–16.

    CAS  Google Scholar 

  • Ebdon L, Hill S (1989) Interfaces between liquid chromatography and atomic absorption. In: Harrison R, Rapsomanikis S (eds) Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy. Ellis Horwood Ltd., Chichester, pp 165–187.

    Google Scholar 

  • Elias RW, Hirao Y, Patterson CC (1982) The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim Cosmochim Acta 46:2561–2580.

    CAS  Google Scholar 

  • El-Sharkawi AM, Morgan WD, Cobbold S, Jaib MBM, Evans CJ, Somervaille LJ, Chettle DR, Scott MC (1986) Unexpected mobilization of lead during cis-platin chemotherapy. Lancet 2:249–250.

    PubMed  CAS  Google Scholar 

  • Ericson JE, Shirahata H, Patterson CC (1979) Skeletal concentrations of lead in ancient Peruvians. N Engl J Med 300:946–951.

    PubMed  CAS  Google Scholar 

  • Ericson JE, Smith DR, Flegal AR (1990) Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians. Environ Health Perspect 93:217–222.

    Google Scholar 

  • Everson J, Patterson CC (1980) “Ultra-clean” isotope dilution/mass spectrometry analyses for lead in human blood plasma indicate that most reported values are artificially high. Clin Chem 26:1603–1607.

    PubMed  CAS  Google Scholar 

  • Faure G (1986) Principles of Isotope Geology. John Wiley & Sons, New York.

    Google Scholar 

  • Feldman BJ, Osterloh JD, Hata BH, D’Alessandro A (1994) Determination of lead in blood by square wave anodic stripping voltammetry at a carbon disk ultramicroelectrode. Anal Chem 66:1983–1987.

    PubMed  CAS  Google Scholar 

  • Feldman BJ, D’Alessandro A, Osterloh JD, Hata BH (1995) Electrochemical determination of low blood lead concentrations with a disposable carbon microarray electrode. Clin Chem 41:557–563.

    PubMed  CAS  Google Scholar 

  • Flegal AR, Patterson CC (1983) Vertical concentration profiles of lead in the Central Pacific at 15N and 20S. Earth Planet Sci Lett 64:19–32.

    CAS  Google Scholar 

  • Flegal AR, Stukas VJ (1987) Accuracy and precision of lead isotopic composition measurements in seawater. Mar Chem 22:163–177.

    CAS  Google Scholar 

  • Flegal AR, Coale KH (1989) Discussion: Trends in lead concentrations in major U.S. rivers and their relation to historical changes in gasoline-lead consumption. Water Res Bull 25:1275–1277.

    CAS  Google Scholar 

  • Flegal AR, Nriagu JO, Niemeyer S, Coale K (1989) Isotopic tracers of lead contamination in the Great Lakes. Nature 339:455–458.

    CAS  Google Scholar 

  • Flegal AR, Smith DR, Elias R (1990) Lead contamination in foods. In: Nriagu JO, Simmons MS (eds) Food Contamination from Environmental Sources. Advances in Environmental Science and Technology, vol 23. Wiley, New York, pp 85120.

    Google Scholar 

  • Flegal AR, Smith DR (1992a) Blood lead concentrations in preindustrial humans. N Engl J Med 326:1293–1294.

    CAS  Google Scholar 

  • Flegal AR, Smith DR (1992b) Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ Res 58:125–133.

    CAS  Google Scholar 

  • Fowler B, Kahng M, Smith D, Conner E, Laughlin N (1993) Implications of lead-binding proteins for risk assessment of lead exposure. J Expos Anal Environ Epidemiol 3:441–448.

    CAS  Google Scholar 

  • Fowler BA, Mahaffey KR (1978) Interactions among lead, cadmium, and arsenic in relation to porphyrin excretion patterns. Environ Health Perspect 25:87–90.

    PubMed  CAS  Google Scholar 

  • Fowler BA, Kimmel C, Woods J, McConnell E, Grant L (1980) Chronic low-level lead toxicity in the rat: III. An integrated assessment of long-term toxicity with special reference to the kidney. Toxicol Appl Pharmacol 56:59–77.

    PubMed  CAS  Google Scholar 

  • Fowler BA, DuVal G (1991) Effects of lead on the kidney: roles of high-affinity lead-binding proteins. Environ Health Perspect 91:77–80.

    PubMed  CAS  Google Scholar 

  • Fowler BA (1992) Mechanisms of kidney cell injury from metals. Environ Health Perspect 100:57–63.

    Google Scholar 

  • Fowler BA, Kahng MW, Smith DR (1994) Role of lead-binding proteins in renal cancer. Environ Health Perspect 102 (Suppl 3):115–116.

    PubMed  CAS  Google Scholar 

  • Gartland KP, Bonner FW, Nicholson JK (1989) Investigations into the biochemical effects of region-specific nephrotoxins. Mol Pharmacol 35:242–250.

    PubMed  CAS  Google Scholar 

  • Gercken B, Barnes RM (1991) Determination of lead and other trace element species in blood by size exclusion chromatography and inductively coupled plasma/mass spectrometry. Anal Chem 63:283–287.

    PubMed  CAS  Google Scholar 

  • Goering PL, Fowler BA (1987) Kidney zinc-thionin regulation of delta-aminolevulinic acid dehydratase inhibition by lead. Arch Biochem Biophys 253:48–55.

    PubMed  CAS  Google Scholar 

  • Goering PL (1993) Lead-protein interactions as a basis for lead toxicity. Neurotoxi-cology 14:45–60.

    CAS  Google Scholar 

  • Gordon B, Jones K (1991) Synchrotron radiation and its application to chemical speciation. In: Subramanian KS, Iyengar GV, Okamoto K (eds) Biological Trace Element Research: Multidisciplinary Perspectives. ACS Series 445, American Chemical Society, Washington, DC, pp 290–305.

    Google Scholar 

  • Flail M, Loscombe S, Taylor A (1988) Trace element contamination from blood specimen containers. Trace Elem Med 5:126–129.

    Google Scholar 

  • Heitkemper D, Creed J, Caruso J (1989) Speciation of arsenic in urine using high performance liquid chromatography with inductively coupled plasma mass spectrometry detection. J Anal At Spectrom 4:279–284.

    CAS  Google Scholar 

  • Herzog R, Mattauch JHE (1934) Ann Phys Leipzig 19:345–354.

    CAS  Google Scholar 

  • Heumann KG (1988) Isotope dilution mass spectrometry. In: Adams F, Gijbels R, Van Grieken R (eds) Inorganic Mass Spectrometry. John Wiley & Sons, New York, pp 301–376.

    Google Scholar 

  • Hieftje GM, Vickers GH (1989) Developments in plasma source/mass spectrometry. Anal Chem Acta 216:1–24.

    CAS  Google Scholar 

  • Horwitz W, Kamps LR, Boyer KW (1980) Quality assurance in the analyses of foods for trace constituents. J Assoc Off Anal Chem 63:1344–1354.

    PubMed  CAS  Google Scholar 

  • Houk RS, Thompson JJ (1988) Inductively coupled plasma mass spectrometry. Mass Spectrom Rev 7:425–461.

    CAS  Google Scholar 

  • Hryhorczuk DO, Rabinowitz MB, Hessel SM, Hoffman D, Hogan MM, Mallin K, Finch H, Orris P, Berman E (1985) Elimination kinetics of blood lead in workers with chronic lead intoxication. Am J Ind Med 8:32–42.

    Google Scholar 

  • Huang LQ, Jiang S-J, Houk RS (1987) Scintillation-type ion detection for inductively coupled plasma mass spectrometry. Anal Chem 59:23216–23220.

    Google Scholar 

  • Iyengar GV (1989) Elemental Analysis of Biological Systems, Vol. I: Biomedical, Environmental, Compositional, and Methodological Aspects of Trace Elements. CRC Press, Boca Raton, FL, p 242.

    Google Scholar 

  • Jagner D (1982) Potentiometric stripping analysis. Analyst 107:593–599.

    CAS  Google Scholar 

  • Johansson S, Campbell J (1988) PIXE: a novel technique for elemental analysis. John Wiley and Sons, New York, pp 134–140.

    Google Scholar 

  • Jones K, Gordon B (1989) Trace element determinations with synchrotron-induced X-ray emission. Anal Chem 61:349A–358A.

    Google Scholar 

  • Jones M, Basinger M, Topping R, Gale G, Jones S, Holscher M (1988) Meso-2,3dimercaptosuccinic acid and sodium N-benzyl-N-dithiocarboxy-D-glucamine as antagonists for cadmium intoxication. Arch Toxicol 62:29–36.

    PubMed  CAS  Google Scholar 

  • Kawaguchi H (1988) Inductively coupled plasma mass spectrometry. Anal Sci 4: 339–345.

    CAS  Google Scholar 

  • Koppenaal DW (1988) Atomic mass spectrometry. Anal Chem 60:113R–131R.

    PubMed  CAS  Google Scholar 

  • Koppenaal DW (1990) Atomic mass spectrometry. Anal Chem 62:303R–324R.

    PubMed  CAS  Google Scholar 

  • Lane DS, Martin ES (1982) An ultrastructural examination of lead localization in germinating seeds of Raphanus sativus. Z Pflanzenphysiol 107:33–41.

    CAS  Google Scholar 

  • Lasztity A, Viczian M, Wang X, Barnes R (1989) Sample analyses by on-line isotope dilution inductively coupled mass spectrometry. J Anal At Spectrom 4:761–766.

    CAS  Google Scholar 

  • Lindh U, Brune D, Nordberg G (1978) Microprobe analysis of lead in human femur by proton induced X-ray emission (PIXE). Sci Total Environ 10(1):31–37.

    PubMed  CAS  Google Scholar 

  • Linton AL, Richmond JM, Clark WF, Lindsay RM, Driedger AA, Lamki LM (1985) Gallium-67 scintigraphy in the diagnosis of acute renal disease. Clin Nephrol 24(2):84–87.

    PubMed  CAS  Google Scholar 

  • Long GJ, Rosen JF, Schanne FA (1994) Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F-NMR. J Biol Chem 269(2):834–837.

    PubMed  CAS  Google Scholar 

  • Longerich HP, Fryer BJ, Strong DF (1987) Determination of lead isotopes ratios by inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochim Acta 42B:39–48.

    CAS  Google Scholar 

  • Lowe T, Chen Q, Fernando Q, Keith R, Gandolfi AJ (1993) Elemental analysis of renal slices by proton-induced X-ray emission. Environ Health Perspect 101(4): 302–308.

    PubMed  CAS  Google Scholar 

  • Mahaffey KR, Capar SG, Gladen BC, Fowler BA (1981) Concurrent exposure to lead, cadmium, and arsenic: Effects on toxicity and tissue metal concentrations in the rat. J Lab Clin Med 48:463–481.

    Google Scholar 

  • Mahaffey KR, Annest JL (1986) Association of erythrocyte protoporphyrin and blood lead level and iron status in the Second National Health and Nutrition Examination Survey, 1976–1980. Environ Res 41:327–338.

    PubMed  CAS  Google Scholar 

  • Manton WI, Cook JD (1984) High accuracy (stable isotope dilution) measurements of lead in serum and cerebrospinal fluid. Br J Ind Med 41:313–319.

    PubMed  CAS  Google Scholar 

  • Manton WI (1985) Total contribution of airborne lead to blood lead. Br J Ind Med 42:168–172.

    PubMed  CAS  Google Scholar 

  • Marcus A (1985) Multicompartment kinetic models for lead, bone diffusion models for long-term retention. Environ Res 36:441–458.

    PubMed  CAS  Google Scholar 

  • Maring H, Settle DM, Buat-Menard P, Dulac F, Patterson CC (1987) Stable lead isotopic tracers pf air mass trajectories in the Mediterranean region. Nature (London) 330:154–156.

    CAS  Google Scholar 

  • Markovac J, Goldstein GW (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nature (London) 334:71–73.

    CAS  Google Scholar 

  • Marshall J (1988) The ICP: is it the real thing? Anal Proc (London) 25:238–240.

    CAS  Google Scholar 

  • McMichael A, Baghurst P, Wigg N, Vimpani GV, Robertson EF, Roberts RJ (1988). Port Pirie cohort study: Environmental exposure to lead and children’s abilities at the age of four years. N Engl J Med 319:468–475.

    PubMed  CAS  Google Scholar 

  • Michaels AF, Flegal AR (1990) Lead in marine planktonic organisms and pelagic food webs. Limnol Oceanogr 35:287–295.

    CAS  Google Scholar 

  • Mistry P, Lucier GW, Fowler BA (1985) High-affinity lead binding proteins in rat kidney cytosol mediate cell-free nuclear translocation of lead. J Pharmacol Exp Ther 232(2):462–469.

    PubMed  CAS  Google Scholar 

  • Montrasser A, Chan S, Koopenaal DW (1987) Inductively coupled helium plasma as an ion source for mass spectrometry. Anal Chem 59:1240–1242.

    Google Scholar 

  • Morgan A, Davies T, Erasmus D (1975) Changes in the concentration and distribution of elements during electron microscope preparation procedures. Micron 6:11–15.

    CAS  Google Scholar 

  • Moyer TP, Mussmann GV, Nixon DE (1991) Blood-collection device for trace and ultra-trace metal specimens evaluated. Clin Chem 37:709–714.

    PubMed  CAS  Google Scholar 

  • Munro S, Ebdon L, McWeeny DJ (1986) Application of inductively coupled plasma mass spectrometry (ICP-MS) for trace determination in foods. J Anal At Spectrom 1:211–219.

    CAS  Google Scholar 

  • Murozumi M, Chow TJ, Patterson C (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta 33:1247–1294.

    CAS  Google Scholar 

  • National Research Council (NRC) (1980) Lead in the Human Environment. National Academy Press, Washington, DC.

    Google Scholar 

  • NRC (1993) Measuring Lead Exposure in Infants, Children, and Other Sensitive Populations. National Academy Press, Washington, DC.

    Google Scholar 

  • Needleman HL, Gunnoe C, Leviton A, Reed R, Peresie H, Maher C, Barrett P (1979) Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N Engl J Med 300:689–695.

    PubMed  CAS  Google Scholar 

  • Needleman HL, Schell A, Bellinger D, Leviton A, Allred E (1990) The long-term effects of exposure to low doses of lead in childhood: an 11-year follow-up report. N Engl J Med 322:83–88.

    PubMed  CAS  Google Scholar 

  • Needleman HL (ed) (1992) Human Lead Exposure. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ng A, Patterson CC (1982) Changes of lead and barium with time in California offshore basin sediments. Geochim Cosmochim Acta 46:2307–2321.

    CAS  Google Scholar 

  • Nriagu JO, Pacnya JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature (London) 333:134–139.

    CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature (London) 338:47–49.

    CAS  Google Scholar 

  • Nriagu, JO (1990a) The rise and fall of leaded gasoline. Sci Total Environ 92:13–28.

    CAS  Google Scholar 

  • Nriagu JO (1990b) Global metal pollution: poisoning the biosphere? Environment 32:7–33.

    Google Scholar 

  • O’Flaherty EJ (1991) Physiologically-based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicol Appl Pharmacol 111:313–331.

    PubMed  Google Scholar 

  • Oskarsson A, Squibb KS, Fowler BA (1982) Intracellular binding of lead in the kidney: the partial isolation and characterization of postmitochondrial lead binding components. Biochem Biophys Res Commun 104(1):290–298.

    PubMed  CAS  Google Scholar 

  • Oskarsson A, and Johansson A (1987) Lead-induced inclusion bodies in rat kidney after perinatal treatment with lead and disulfiram. Toxicology 44(1):61–72.

    PubMed  CAS  Google Scholar 

  • Osteryoung J (1988) Electrochemical methods of analyses. In: Riordan JF, Vallee BL (eds) Methods in Enzymology, Metallobiochemistry, Part A. Academic Press, New York, pp 243–267.

    Google Scholar 

  • Owen LM, Crews HM, Hutton RC, Walsh A (1992) Preliminary study of metals in proteins by high-performance liquid chromatography-inductively coupled plasma mass spectrometry using multi-element time-resolved analysis. Analyst 117(3):649–655.

    PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1975) Characteristics of a pyrimidine-specific 5’ nucleotidase in human erythrocytes. J Biol Chem 250:7973–7979.

    PubMed  CAS  Google Scholar 

  • Paschal D (1990) Biological monitoring with atomic spectroscopy. Spectrochim Acta 44B:1229–1236.

    Google Scholar 

  • Patterson CC (1965) Contaminated and natural lead environments of Man. Arch Environ Health 11:344–360.

    PubMed  CAS  Google Scholar 

  • Patterson CC, Settle DM (1976) The reduction of orders of magnitude errors in lead analyses of biological materials and natural waters by evaluating and controlling the extent and sources of industrial lead contamination introduced during sample collecting, handling, and analysis. In: National Bureau of Standards Special Publication 422, Accuracy in Trace Analysis: Sampling, Sample Handling, and Analysis (Proceedings of the 7th IMR Symposium, Gaithersburg, MD), pp 321–351.

    Google Scholar 

  • Patterson CC (1980) An alternative perspective, lead pollution in the human environment: origin, extent, and significance. In: Lead in the Human Environment. National Academy Press, Washington, DC, pp 265–349.

    Google Scholar 

  • Patterson CC (1982) Natural levels of lead in humans. Carolina Environmental Essay Series III, Institute for Environmental Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC.

    Google Scholar 

  • Patterson CC (1987) Global pollution measured by lead in mid-ocean sediments. Nature (London) 326:244–245.

    Google Scholar 

  • Patterson CC, Settle DM (1987) Review of data on aeolian fluxes of industrial lead to the lands and seas in remote regions on a global scale. Mar Chem 22:137–162.

    CAS  Google Scholar 

  • Patterson CC, Shirahata H, Ericson JE (1987) Lead in ancient human bones and its relevance to historical developments of social problems with lead. Sci Total Environ 61:167–200.

    PubMed  CAS  Google Scholar 

  • Patterson CC, Ericson J, Manea-Krichten M, Shirahata H (1991) Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ 107:205–236.

    PubMed  CAS  Google Scholar 

  • Pesek JJ, Schneider JF (1988) The detection of mercury, lead, and methylmercury binding sites on lysozyme by carbon-13 NMR chemical shifts of the carboxylate groups. J Inorg Biochem 32(4):233–238.

    PubMed  CAS  Google Scholar 

  • Pickford CJ, Brown RM (1986) Comparison of ICP-MS with ICP-ES: Detection power and inference effects experienced with complex matrices. Spectrochim Acta 41B:183–187.

    CAS  Google Scholar 

  • Piomelli S, Seaman C, Zullow D, Curran A, Davidow B (1982) Threshold for lead damage for heme synthesis in urban children. Proc Natl Acad Sci USA 79:3335–3339.

    PubMed  CAS  Google Scholar 

  • Pounds JG, Long GJ, Rosen JF (1991) Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91:17–32.

    PubMed  CAS  Google Scholar 

  • Pounds JG, Cory-Slechta D (1993) New dimensions of lead neurotoxicity: redefining mechanisms and effects. Neurotoxicology 14:4–6.

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB (1987) Stable isotope mass spectrometry in childhood lead poisoning. Biol Trace Elem Res 12:223–229.

    CAS  Google Scholar 

  • Rabinowitz MB, Wetherill GW (1972) Identifying sources of lead contamination by stable isotope techniques. Environ Sci Technol 6:705–709.

    CAS  Google Scholar 

  • Rabinowitz MB, Wetherill GW, Kopple JD (1973) Lead metabolism in the normal human: Stable isotope studies. Science 182:725–727.

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB, Wetherill GW, Kopple JD (1976) Kinetic analysis of lead metabolism in healthy humans. J Clin Invest 58:260–270.

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB, Wetherill GW, Kopple JD (1977) Magnitude of lead intake from respiration by normal man. J Lab Clin Med 90:238–248.

    PubMed  CAS  Google Scholar 

  • Reid RS, Podanyi B (1988) A proton NMR study of the glycine-mercury(II) system in aqueous solution. J Inorg Biochem 32:183–195.

    PubMed  CAS  Google Scholar 

  • Rosen JF, Markowitz ME, Bijur PE, Jenks ST, Wielopolski L, Kalef-Ezra JA, Slatkin DN (1989) L-X-Ray fluorescence of cortical bone lead compared with the CaNa2-EDTA test in lead-toxic children: Public health implications. Proc Natl Acad Sci 86:685–689. [Erratum: Proc Natl Acad Sci 86(19):7595 (1989).]

    PubMed  CAS  Google Scholar 

  • Rosen JF, Pounds JG (1989) Quantitative interactions between Pb and Ca homeo- stasis in cultured osteoclastic bone cells. Toxicol Appl Pharmacol 98:530–543.

    PubMed  CAS  Google Scholar 

  • Russ GP (1989) Isotope ratio measurements using ICP-MS. In: Date AR, Gray AL (eds) Applications of Inductively Coupled Plasma Mass Spectrometry. Chapman and Hall, New York, pp 90–114.

    Google Scholar 

  • Russell RD, Farquhar RM (1960) Lead Isotopes in Geology. Interscience, New York. Satzger RD, Fricke FL, Brown PG, Caruso JA (1987) Detection of halogens as positive ions using a helium microwave induced plasma as an ion source for mass spectrometry. Spectrochim Acta 42B:705–712.

    Google Scholar 

  • Schanne FA, Moskal JR, Gupta RK (1989a) Effect of lead on intracellular free calcium ion concentration in a presynaptic neuronal model: 19F-NMR study of NG108–15 cells. Brain Res 503(2):308–311.

    CAS  Google Scholar 

  • Schanne FA, Dowd TL, Gupta RK, Rosen JF (1989b) Lead increases free Ca2+ concentration in cultured osteoblastic bone cells: simultaneous detection of intracellular free Pb2+ by 14F NMR. Proc Natl Acad Sci 86(13):5133–5135.

    CAS  Google Scholar 

  • Schidlovsky G, Jones KW, Burger DE, Milder FL, Hu H (1990) Distribution of lead in human bone: II. Proton microprobe measurements. Basic Life Sci 55:275–280.

    PubMed  CAS  Google Scholar 

  • Schmidt PF, Fromme HG, Pfefferkorn G (1980) LAMMA—investigations of biological and medical specimens. Scanning Electron Microsc. 2:623–634.

    Google Scholar 

  • Schmidt PF, Ilsemann K (1984) Quantitation of laser-microprobe-mass-analyses results by the use of organic mass peaks for internal standards. Scanning Electron Microsc 1:77–85.

    Google Scholar 

  • Schmidt PF, Lehmann RR, Ilsemann K, Wilhelm AH (1985) Distribution patterns of lead in the aortic wall determined by lamma. Artery 12(5):277–285.

    PubMed  CAS  Google Scholar 

  • Schmidt PF, Barckhaus RH, Kleimeier W (1986) Laser microprobe mass analyzer investigations on the localization of cadmium in renal cortex of rats after longterm exposure to cadmium. Trace Elem Med 3:19–24.

    CAS  Google Scholar 

  • Schmidt PF, Barckhaus RH (1991) How can toxic elements be localized in histological sections by laser microprobe mass analysis (LAMMA)? Prog Histochem Cytochem 23(1–4):342–354.

    PubMed  CAS  Google Scholar 

  • Schutz A, Skerfving S, Christoffersson, JO, Tell I (1994) Chelatable lead versus lead in human trabecular and compact bone. Sci Total Environ 61:201–209.

    Google Scholar 

  • Schwartz J, Angle C, Pitcher H (1986) Relationship between childhood blood lead levels and stature. Pediatrics 77:281–288.

    PubMed  CAS  Google Scholar 

  • Schwartz J, Otto D (1987) Blood lead, hearing thresholds, and neurobehavioral development in children and youth. Arch Environ Hlth 42:153–160.

    CAS  Google Scholar 

  • Schwartz J (1994) Low-level lead exposure and children’s IQ: A meta-analysis and search for a threshold. Environ Res 65:42–55.

    PubMed  CAS  Google Scholar 

  • Settle DM, Patterson CC (1980) Lead in albacore: Guide to lead pollution in Americans. Science 207:1167–1176.

    PubMed  CAS  Google Scholar 

  • Sharp DS, Becker CE, Smith AH (1987) Chronic low-level lead exposure: Its role in the pathogenesis of hypertension. Med Toxicol 2:210–232.

    PubMed  CAS  Google Scholar 

  • Shelton K, Egle P (1982) The proteins of lead-induced intranuclear inclusion bodies. J Biol Chem 257:11802–11807.

    PubMed  CAS  Google Scholar 

  • Shen GT, Boyle EA (1987) Lead in corals: Reconstruction of historical industrial fluxes to the surface ocean. Earth Planet Sci Lett 82:289–304.

    CAS  Google Scholar 

  • Shirahata H, Elias RW, Patterson CC, Koide M (1980) Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim Cosmochim Acta 44:149–162.

    CAS  Google Scholar 

  • Silbergeld EK, Fowler BA (eds) (1988) Mechanisms of chemical-induced porphyrinopathies. Ann NY Acad Sci, 514.

    Google Scholar 

  • Simons TJ (1993) Lead transport and binding by human erythrocytes in vitro. Pflügers Arch Eur J Physiol 423:307–313.

    CAS  Google Scholar 

  • Slatkin D, Hanson A, Jones K, Kraner H, Warren J, Finkel G (1984) Damage to air-dried human blood cells and tissue sections by synchrotron radiation. Nucl Instrum Methods 227:378–384.

    Google Scholar 

  • Slavin W (1988) Atomic absorption spectrometry. In: Riordan JF, Vallee BL (eds) Methods in Enzymology: Metallobiochemistry, Part A. Academic Press, New York, pp 117–144.

    Google Scholar 

  • Smith D, Markowitz M, Crick J, Rosen J, Flegal AR (1994) The effects of succimer on the absorption of lead in adults determined by using the stable isotope 204Pb. Environ Res 67:39–57.

    PubMed  CAS  Google Scholar 

  • Smith DR, McNeill F (1995) In vivo measurement and speciation of nephrotoxic metals. In: Fowler BA, Chang L (eds) Target Organ Toxicology (Vol. II): Renal Toxicology of Metals. CRC Press, Boca Raton, FL (in press).

    Google Scholar 

  • Smith DR, Niemeyer S, Estes J, Flegal AR (1990) Stable lead isotopes evidence anthropogenic contamination in Alaskan sea otters. Environ Sci Technol 24: 1517–1521.

    CAS  Google Scholar 

  • Smith DR, Flegal AR (1992a) Stable isotopic tracers of lead mobilized by DMSA chelation in low lead-exposed rats. Toxicol Appl Pharmacol 116:85–91.

    CAS  Google Scholar 

  • Smith DR, Flegal AR (1992b) Public health implications of natural levels of lead in humans. Am J Publ Health 82:1565–1566.

    CAS  Google Scholar 

  • Smith DR, Niemeyer S, Flegal AR (1992a) Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environ Res 57:163–174.

    CAS  Google Scholar 

  • Smith DR, Osterloh J, Niemeyer S, Flegal AR (1992b) Stable isotope labeling of lead compartments in rats with ultra-low lead concentrations. Environ Res 57: 190–207.

    CAS  Google Scholar 

  • Smith DR, Flegal AR (1995) Lead in the biosphere: recent trends. AMBIO 24:21–23.

    Google Scholar 

  • Somervaille LJ, Chette DR, Scott MC, Tennant DR, McKiernan MJ, Skilbeck A, Trethowan WN (1988) In vivo tibia lead measurements as an index of cumulative exposure in occupationally exposed subjects. Br J Ind Med 45:174–181.

    PubMed  CAS  Google Scholar 

  • Spencer SG, Brewer JM, Ellis PD (1985) Cadmium(II)-113 NMR studies of the mechanism of metal ion activation of yeast enolase. J Inorg Biochem 24(1):47–57.

    PubMed  CAS  Google Scholar 

  • Sturges WT, Barrie LA (1987) Lead 206Pb/207Pb isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 329:144–146.

    CAS  Google Scholar 

  • Tera O, Schwartzman DW, Watkins TR (1985) Identification of gasoline lead in children’s blood using isotopic analyses. Arch Environ Hlth 40:120–123.

    CAS  Google Scholar 

  • Todd AC, Chettle DR, Scott MC, Somervaille LJ (1993) A pilot study using 99mTc to measure lead and platinum in the human kidney. Nucl Med Biol 20:589–595.

    PubMed  CAS  Google Scholar 

  • Todd AC, Chettle DR (1994) In vivo X-ray fluorescence of lead in bone: review and current issues. Environ Hlth Perspect 102:172–177.

    CAS  Google Scholar 

  • Tomlinson M, Wang J, Caruso J (1994) Speciation of toxicologically important transition metals using ion chromatography with inductively coupled plasma mass spectrometric detection. J Anal At Spectrom 9:957–964.

    CAS  Google Scholar 

  • Torok SB, Van Grieken RE (1994) X-ray spectrometry. Anal Chem 66:186R–206R.

    PubMed  CAS  Google Scholar 

  • Turekian KK (1979) The fate of metals in the oceans. Geochim Cosmochim Acta 41:1139–1144.

    Google Scholar 

  • Uden P (1989) Chromatographic detection by atomic plasma emission spectroscopy. In: Harrison R, Rapsomanikis S (eds) Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy. Ellis Horwood Ltd., Chichester, pp 96–126.

    Google Scholar 

  • U.S. Bureau of Mines (1992) Lead: Annual Report 1990. U.S. Bureau of Mines, Colorado Springs, CO.

    Google Scholar 

  • U.S. Environmental Protection Agency (1986) Air quality criteria for lead. EPA 600/08/028aF-dF, 4 vols. U.S. Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Vandeputte D, Verbueken A, Jacob W, Van Grieken R (1985) Laser microprobe mass analysis (LAMMA) to study lead intoxication at the subcellular level. Acta Pharmacol Toxicol 59(Suppl VII):617–629.

    Google Scholar 

  • Vandeputte D, Jacob W, Van Grieken R (1990) Influence of fixation procedures on the microanalysis of lead-induced intranuclear inclusions in rat kidney. J Histochem Cytochem 38:331–337.

    PubMed  CAS  Google Scholar 

  • Vasak M, Hawkes GE, Nicholson JK, Sadler PJ (1985) 13Cd NMR studies of reconstituted seven-cadmium metallothionein: evidence for structural flexibility. Biochemistry 24:740–747.

    PubMed  CAS  Google Scholar 

  • Verbueken AH, Van Grieken RE, Paulus GJ, Verpoten GA, De Broe ME (1984) Laser microprobe mass spectrometry of platinum in dog kidney after cisplatin administration. Biomed Mass Spectrom 11(4):159–163.

    PubMed  CAS  Google Scholar 

  • Veron A, Church TM, Patterson CC, Flegal AR (1994). Use of stable lead isotopes to characterize the sources of anthropogenic lead in North Atlantic surface waters. Geochim Cosmochim Acta 58:3199–3206.

    CAS  Google Scholar 

  • Versieck J, Barbier F, Cornelis R, Hoste J (1982) Sample contamination as a source of error in trace-element analysis of biological samples. Talanta 29:973–984.

    PubMed  CAS  Google Scholar 

  • Versieck J, Vanballenberghe L, De Kesel A, Van Renterghem D (1987) Accuracy of biological trace-element determinations. Biol Trace Elem Res 12:45–54.

    CAS  Google Scholar 

  • Viczian M, Lasztity A, Barnes R (1990) Identification of potential environmental sources of childhood lead poisoning by inductively coupled plasma mass spectrometry. Verification and case studies. J Anal At Spectrom 5:293–300.

    CAS  Google Scholar 

  • Visser W, Van de Vyver, Verbueken A, Lentferink M, Van Grieken R, De Broe M (1984) The localization of aluminum in bone by means of histochemical and laser microprobe mass analytical methods. Calcif Tissue Int 36:S22.

    Google Scholar 

  • Ward NI, Watson R, Bryce-Smith D (1987) Placental element levels in relation to fetal development for obstetrically ‘normal’ births: a study of 37 elements. Evidence for effects of cadmium, lead, and zinc fetal growth, and for smoking as a source of cadmium. Int J Biosocial Res 9:63–81.

    Google Scholar 

  • Wasserman GA, Graziano JH, Factor-Litvak P, Popovac D, Morina N, Musabegovic A, Vrenezi N, Capuni-Paracka S, Lekic V, Preteni-Redjepi E, et al. (1994) Consequences of lead exposure and iron supplementation on childhood development at age 4 years. Neurotoxicol Teratol 16:233–240.

    PubMed  CAS  Google Scholar 

  • Watanabe H, Hu H, Rotnitzky A (1994) Correlates of bone and blood lead levels in carpenters. Am J Ind Med 26:255–264.

    PubMed  CAS  Google Scholar 

  • Webster RK (1960) Mass spectrometric isotope dilution analysis. In: Smales AA, Wager RR (eds) Methods in Geochemistry. Interscience, New York, pp 202–246.

    Google Scholar 

  • Windom HL, Byrd JT, Smith RG, Huan F (1991) Inadequacy of NASQAN data for assessing metal trends in the nation’s rivers. Environ Sci Technol 25:1137–1142.

    CAS  Google Scholar 

  • Wittmers LE Jr, Wallgren A, Alich A, Aufderheide AC, Rapp G Jr (1988) Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health 43: 381–391.

    PubMed  CAS  Google Scholar 

  • Wrackmeyer B, Horchler K (1989) Trimethylleadlithium in tetrahydrofuran. Synthesis of triethyl(trimethylplumbyl)silane and the trimethylplumbyltrihydriborate anion [in German]. Z Naturforsch B: Chem Sci 44:1195–1198.

    CAS  Google Scholar 

  • Zhong C, Ling Y, Wu Z, Zhu S, Hu R (1987) Distribution of lead in renal proximal convoluted tubules of lead poisoned rats. J Electron Microsc Technol 7:91–99.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Flegal, A.R., Smith, D.R. (1995). Measurements of Environmental Lead Contamination and Human Exposure. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 143. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2542-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2542-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7574-9

  • Online ISBN: 978-1-4612-2542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics