Advertisement

An Introduction to the Deformation Theory of Galois Representations

  • Barry Mazur

Abstract

Before this conference I had never been to any mathematics gathering where so many people worked as hard or with such high spirits, trying to understand a single piece of mathematics.

Keywords

Modular Form Deformation Theory GALOIS Representation Covariant Functor Residue Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Az]
    Azumaya, G., On maximally central algebras, Nagoya Math. J. 2 (1951),119–150.MathSciNetzbMATHGoogle Scholar
  2. [B 1]
    Boston, N., Explicit deformation of Galois representations., Invent. Math. 103 (1991), 181–196.MathSciNetCrossRefGoogle Scholar
  3. [B 2]
    Boston, N., A refinement of the Faltings-Serre method„ Number Theory (S. David, ed.), Cambridge Univ. Press, 1995, pp. 61–68.Google Scholar
  4. [B-M]
    Boston, N., Mazur, B., Explicit deformations of Galois representations,Algebraic Number Theory — in honor of K. Iwasawa (Coates, Greenberg, Mazur, Satake, eds.), Advanced Studies in Pure Mathematics 17 Academic Press, 1989, pp. 1–21.Google Scholar
  5. [B-U]
    Boston, N., Ullom, S., Representations related to CM elliptic curves, Math.Proc. Camb. Phil. Soc. 113 (1993), 71–85.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Bourb 1]
    Bourbaki, N., Algebre, Ch. VIII, Hermann 1958.Google Scholar
  7. [Bourb 2]
    Bourbaki, N., Algebre commutative, Ch. I-IV, Masson, 1985.Google Scholar
  8. [By]
    Byrne, D., Stop Making Sense, Video, The Talking Heads.Google Scholar
  9. [Ca]
    Carayol, H., Formes modulaires et représentations Galoisiennes à valeursdans un anneau local complet„ p-adic Monodromy and the Birch-Swinnerton-Dyer Conjecture (Mazur and Stevens, eds.), Contemporary Mathematics 165 Amer. Math. Soc., 1994, pp. 213–237.Google Scholar
  10. [C]
    Coleman, R., P-adic Banach spaces and families of modular forms, Invent.math. (to appear).Google Scholar
  11. [Co]
    Conrad, B., The flat deformation functor,(this volume).Google Scholar
  12. [C-R]
    Curtis, C., Reiner, I., Representation theory of finite groups and associative algebras, Wiley, 1962.zbMATHGoogle Scholar
  13. [D-D-T]
    Darmon, H., Diamond, F., Taylor, R., Fermat’s Last Theorem, Current De-velopments in Mathematics (Bott, Jaffe, Yau, eds.), (1995), International Press., 1995, pp. 1–108.Google Scholar
  14. [D-W]
    Doran, C., Wong, S., The deformation theory of Galois representations,in preparation..Google Scholar
  15. [Fo 1]
    Fontaine, J.-M., Groupes p-divisibles sur les corps locaux, Astérisque, Soc. Math. de France 47–48 (1977).Google Scholar
  16. [Fo 2]
    Fontaine, J.-M., Groupes finis commutatifs sur les vecteurs de Witt, C.R. Acad. Sci. Paris 280 (1975), 1423–1425.MathSciNetzbMATHGoogle Scholar
  17. [F-L]
    Fontaine, J.-M., Laffaille, Construction de représentations p-adiques, Ann. Scient. E.N.S. 15 (1982), 547–608.MathSciNetzbMATHGoogle Scholar
  18. [F-M]
    Fontaine, J.-M., Mazur, B., Geometric Galois representations, Proceedings of the Conference on Elliptic Curves and Modular Forms (Coates, Yau, eds.), Hong Kong, Dec. 18–21 1993, International Press., 1995, pp. 47–78.Google Scholar
  19. [Fr]
    Frobenius, G., Über die Primfactoren der Gruppendeterminante, Sitz. Preuss. Akad. Berlin (1896), 1343–1382 (pp. 38–77 in Ges. Abh. III).Google Scholar
  20. [G]
    Gouvêa, F. Arithmetic of p-adic modular forms,Lecture Notes in Math. 1304 Springer-Verlag, 1988.zbMATHGoogle Scholar
  21. [G-M]
    Gouvêa, F., Mazur, B. Families of modular eigenforms, Mathematics of Computation 58 (1992), 793–805.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [Gr]
    Grothendieck, A., Éléments de Géométrie Algébrique IV (Étude locale des schémas et des morphismes de schémas), Publ. Math. IHES 20 (1964).Google Scholar
  23. [H]
    Hida, H., Elementary theory of L-functions and Eisenstein series, London Math. Soc. (1993).zbMATHCrossRefGoogle Scholar
  24. [Ha]
    Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977.zbMATHGoogle Scholar
  25. [K-O]
    Knus, M.-A., Ojanguren, M., Théorie de la descente et algébres d’Azumaya, Lecture Notes in Math 389, Springer-Verlag, 1974.zbMATHGoogle Scholar
  26. [L-M]
    Lubotzky, A., Magid, A., Varieties fo representations of finitely generated groups, Memoirs of the A.M.S. 58 (1985).Google Scholar
  27. [L-S]
    Lenstra, H., de Smit, B., Explicit construction of universal deformation rings, (this volume).Google Scholar
  28. [Mat]
    Matsumura, H., Commutative Algebra, W.A. Benjamin Co., 1970.zbMATHGoogle Scholar
  29. [M 1]
    Mazur, B., Deforming Galois representations, Galois groups over Q (Ihara, Ribet, Serre, eds.), MSRI Publications 16, Springer-Verlag, 1989, pp. 385–437.Google Scholar
  30. [M 2]
    Mazur, B.Two-dimensional p-adic Galois representations unramified away from p, Compositio Math 74 (1990), 115–133.MathSciNetzbMATHGoogle Scholar
  31. [M 3]
    An “infinite fern” in the universal deformation space of Galois representations, Proceedings of the Journées Arithmeétiques, held in Barcelona, July 1995. (to appear).Google Scholar
  32. [M T]
    Mazur, B., Tilouine, J., Représentations galoisiennes, différentielles de Kähler et conjectures principales, Publ. Math. IHES 71 (1990), 65–103.MathSciNetzbMATHGoogle Scholar
  33. [Ny]
    Nyssen, L., Pseudo-représentations, preprint 1994.Google Scholar
  34. [P 1]
    Procesi, C., Rings with Polynoimal Identities, Dekker, 1973.Google Scholar
  35. [P 2]
    Procesi, C., Representations of algebras, Israel J. Math. 19 (1974), 169–182.MathSciNetCrossRefGoogle Scholar
  36. [Ram]
    Ramakrishna, R., On a variation of Mazur’s deformation functor, Com-positio Math 87 (1993), 269–286.MathSciNetzbMATHGoogle Scholar
  37. [Roua]
    Rouquier, R., Caractérisation des caractéres et pseudo-caractéres, preprint 1995.Google Scholar
  38. [Sch]
    Schlessinger, M., Functors on Artin rings, Trans. A.M.S. 130 (1968), 208–222.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [Se 1]
    Serre, J.-P., Corps Locaux, 2nd ed., Hermann, 1968.Google Scholar
  40. [Se 2]
    Serre, J.-P.,Représentations linéaires sur des anneaux locaux (d’aprés Cara-yol), preprint, 1995.Google Scholar
  41. [Se 3]
    Serre, J.-P.,Points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972),259–331.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [T]
    Taylor, R., Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), 281–332.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [T-W]
    Taylor, R., Wiles, A., Ring-theoretic properties of certain Hecke algebras,Annals of Math. 141 (1995), 553–572.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [W]
    Wiles, A., Modular elliptic curves and Fermat’s Last Theorem, Annals of Math. 141 (1995), 443–551.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Barry Mazur

There are no affiliations available

Personalised recommendations