Advertisement

Jordan, Pauli, Politics, Brecht … and a Variable Gravitational Constant

  • Engelbert L. Schucking

Abstract

November 1952. Die Welt’s headline read “EISENHOWER ELECTED PRESIDENT.” Why did they do that, those crazy Americans? This meant the Dulles brothers in power and Adenauer’s rearmament of Germany. I put politics out of my mind and pushed the doorbell of an apartment on Hamburg’s Bundesstrasse. A maid with a little white cap opened the door.

Keywords

Contravariant Vector Nazi Ideology Sway Back Static Gravitational Field Albert Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jordan, P., Schwerkraft und Weltall, Vieweg (Braunschweig), 1952.Google Scholar
  2. [2]
    von Meyenn, Karl, ed., W. Pauli, Scientific Correspondence, Vol. 4, Part 1, Springer (New York), 1996, p. 737.Google Scholar
  3. [3]
    Jordan, P., Statistische Mechanik, Vieweg (Braunschweig), 1944, p. 100.Google Scholar
  4. [4]
    Henschel, K., ed., Physics and National Socialism, Birkhäuser (Boston), 1996, Appendix F, p. xxxv.CrossRefGoogle Scholar
  5. [5]
    Beyler, Richard H., “From Positivism to Organicism: Pascual Jordan’s Interpretations of Modern Physics in Cultural Context,” Ph.D. thesis, Harvard Univ., 1994, p. 207.Google Scholar
  6. [6]
    Henschel, K., op.cit.,p. 57.Google Scholar
  7. [7]
    Wise, M. Norton, “Quantum Mechanics, Psychology, National Socialism,” in Renneberg, Monika, and Walker, Mark, eds., Science, Technology and National Socialism, Cambridge Univ. Press, 1994, p. 226.Google Scholar
  8. [8]
    Kramish, A., The Griffin, Houghton Mifflin (Boston), 1986.Google Scholar
  9. [9]
    von Meyenn, Karl, “Jordan,” in Dictionary of Scientific Biography, Suppl. Vol. II, Scribner’s (New York), 1990, p. 452.Google Scholar
  10. [10]
    Jordan, ref. 1., p. 163.Google Scholar
  11. [11]
    van der Pol, B., Philos. Mag. 6, No.43, 700–719 (1922); ibid. 7, No. 2, 700–719 (1926).Google Scholar
  12. [12]
    Teichmüller, Otto, J. Reine Angew. Mathematik 174, 73 (1935).zbMATHGoogle Scholar
  13. [13]
    Sullivan, WalterContinents in Motion, McGraw-Hill New York, 1974, p. 50.Google Scholar
  14. [14]
    Dirac, P. A. M., “The Cosmological Constants,” Nature 139, 323 (1937).ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    Jordan, P., “Erweiterung der projektiven Relativitätstheorie,” Annalen der Physik, 6 Folge, Band 1, p. 219 (1947).Google Scholar
  16. [16]
    Bergmann, R. G., Annals of Mathematics 49, 255 (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Beyler, Richard H., op. cit., pp. 486–489.Google Scholar
  18. [18]
    von Meyenn, ref. 2, p. 737.Google Scholar
  19. [19]
    Ince, E. L., Ordinary Differential Equations,Longmans New York, 1927.zbMATHGoogle Scholar
  20. [20]
    Kamke, E., Differentialgleichungen, Akademie Verlag (Leipzig), 1944.Google Scholar
  21. [21]
    Jordan, P., Schwerkraft und Weltall, zweite, erweiterte Auflage, bearbeitet unter Mitwirkung von E. Schücking, Vieweg (Braunschweig), 1955, p. 202.Google Scholar
  22. [22]
    Stellmacher, K., Mathematische Annalen 115, 136 (1937); 115, 740 (1938).MathSciNetCrossRefGoogle Scholar
  23. [23]
    Brecht, B., Gesammelte Werke, Stücke 4, Suhrkamp (Berlin), 1988, p. 197.Google Scholar
  24. [24]
    Beyerchen, Alan D., Scientists under Hitler, Yale Univ. Press (New Haven), 1977, p. 170.Google Scholar
  25. [25]
    Sommerfeld, A., Elektrodynamik, Akademie Verlag (Leipzig), 1949, p. 323.Google Scholar
  26. [26]
    Schiff, L., Amer. J. Phys. 28, 340 (1960).MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Schild, A., Amer. J. Phys. 28, 778 (1960).ADSCrossRefGoogle Scholar
  28. [28]
    Schücking, E., Zeitschrift für Physik 148, 72–92 (1957).ADSzbMATHCrossRefGoogle Scholar
  29. [29]
    von Meyenn, ref. 2, p. 800.Google Scholar
  30. [30]
    Thiry, Y., “Etude mathématique des equations d’une théorie unitaire à quinze variables de champ,” Thèse de l’Université de Paris, 1951; Journ. math. p. et appl. 30, 275–396 (1951).MathSciNetzbMATHGoogle Scholar
  31. [31]
    von Meyenn, Karl, ed., W. Pauli, Scientific Correspondence, Vol. 4, Part 2, Springer (New York), to be published, pp. 163, 167.Google Scholar
  32. [32]
    Ibid., pp. 191, 202.Google Scholar
  33. [33]
    Fierz, M., Helvetica Physica Acta XXIX, 128 (1956).MathSciNetGoogle Scholar
  34. [34]
    Pauli, W., in Mercier, A., and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie, [Helvetica Physica Acta, Supplementum IV], Birkhäuser Verlag (Basel), 1956, p. 265.Google Scholar
  35. [35]
    Jammer, M., Naturwissenschaftliche Rundschau, 1984, p. 1.Google Scholar
  36. [36]
    Beller, Mara, Archive for the History of Exact Sciences 33, 337 (1985).MathSciNetCrossRefGoogle Scholar
  37. [37]
    Pauli, W., “Die allgemeinen Prinzipien der Wellenmechanik,” in Handbuch der Physik, zweite Auflage, Band XXIV, Teil 1, Springer (Berlin), 1933, p. 198.Google Scholar
  38. [38]
    Jordan, R, Zeitschrift für Physik 94, 531 (1935).ADSCrossRefGoogle Scholar
  39. [39]
    Jordan, P., von Neumann, J., and Wigner, E., Annals of Mathematics 35, 29 (1934).MathSciNetCrossRefGoogle Scholar
  40. [40]
    Jordan, P., Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 16, Part 1, (Göttingen), 1949, p. 74.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Engelbert L. Schucking

There are no affiliations available

Personalised recommendations