Advertisement

Secondary Analytic Indices

  • John Lott
Part of the Progress in Mathematics book series (PM, volume 171)

Abstract

We define real-valued characteristic classes of flat complex vector bundles, and flat real vector bundles with a duality structure. We construct pushforwards of such vector bundles with vanishing characteristic classes. These pushforwards involve the analytic torsion form in the first case and the eta form of the signature operator in the second case. We show that the pushforwards are independent of the geometric choices made in the constructions and hence are topological in nature. We give evidence that in the first case, the pushforwards are given topologically by the Becker-Gottlieb-Dold transfer.

Keywords

Vector Bundle Short Exact Sequence Chern Character Complex Vector Bundle Cochain Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Atiyah, The signature of fiber bundles, in Global Analysis, Papers in Honor of K. Kodaira, Princeton University Press, Princeton, NJ, 1969, 73–84.Google Scholar
  2. [2]
    M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. of Camb. Phil. Soc. 77 (1975), 43–69.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Atiyah and I. Singer, The index of elliptic operators IV, Ann. of Math. 93 (1971), 119–138.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    J. Becker and D. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), 107–133.MathSciNetzbMATHGoogle Scholar
  5. [5]
    N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992.zbMATHCrossRefGoogle Scholar
  6. [6]
    J.-M. Bismut, The index theorem for families of Dirac operators: Two heat equation proofs, Invent. Math. 83 (1986) 91–151.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J.-M. Bismut and J. Cheeger, η-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), 33–70.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J.-M. Bismut and K. Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Alg. Geom. 1 (1992), 647–684.zbMATHGoogle Scholar
  9. [9]
    J.-M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), 291–363.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ec. Norm. Sup. 4ème Sér. 7 (1974), 235–272.MathSciNetzbMATHGoogle Scholar
  11. [11]
    A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Ann. Math. Stud. 94, Princeton University Press, Princeton, NJ, 1980.Google Scholar
  12. [12]
    R. Bott and S.-S. Chen, Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114 (1968), 71–112.CrossRefGoogle Scholar
  13. [13]
    J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259–322.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    P. Deligne, Le déterminant de la cohomologie, in Current Trends in Arithmetic Algebraic Geometry, Arcata, CA 1985, Contemp. Math. 67, American Mathematical Society, Providence, RI, 1987, 93–177.CrossRefGoogle Scholar
  15. [15]
    A. Dold, The fixed point transfer of fiber-preserving maps, Math. Z. 148 (1976), 215–244.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    W. Dwyer, M. Weiss, and B. Williams, A parametrized index theorem for the algebraic K-theory Euler class, http://www.math.uiuc.edu/K-theory/0086/index.html.Google Scholar
  17. [17]
    H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric I, II, Ann. Math. 131 (1990), 163–170, 205–238.Google Scholar
  18. [18]
    H. Gillet and C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21–54.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    K. Igusa, Parametrized Morse theory and its applications, in Proc. Int. Cong. of Mathematicians, Kyoto, 1990, Math. Soc. of Japan, Tokyo, 1991, 643–651.Google Scholar
  20. [20]
    M. Karoubi, Homologie cyclique et K-théorie, Astérisque 149 (1987).zbMATHGoogle Scholar
  21. [21]
    J. Klein, Higher Franz-Reidemeister torsion; Low-dimensional applications, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Göttingen 1991/Seattle 1991, Contemp. Math. 150, American Mathematical Society, Providence, RI, 1993, 195–204.CrossRefGoogle Scholar
  22. [22]
    J. Lott, R/Z-index theory, Comm. Anal. Geom. 2 (1994), 279–311.MathSciNetzbMATHGoogle Scholar
  23. [23]
    J. Lott and M. Rothenberg, Analytic torsion for group actions, J. Dill. Geom. 34 (1991), 431–481.MathSciNetzbMATHGoogle Scholar
  24. [24]
    W. Lück and A. Ranicki, Surgery obstructions of fibre bundles, J. Pure Appt. Alg. 81 (1992), 139–189.zbMATHCrossRefGoogle Scholar
  25. [25]
    W. Lück and M. Rothenberg, Reidemeister torsion and the K-theory of von Neumann algebras, K-Theory 5 (1991), 213–264.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    G. Lusztig, Novikov’s higher signature and families of elliptic operators, J. Diff. Geom 7 (1971), 229.MathSciNetGoogle Scholar
  27. [27]
    J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math. 28 (1978), 233–305.zbMATHCrossRefGoogle Scholar
  29. [29]
    W. Müller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721–753.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    D. Quillen, Superconnections and the Chern character, Topology 24 (1985), 89–95.MathSciNetzbMATHGoogle Scholar
  31. [31]
    D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145–210.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    D. B. Ray and I. M. Singer, Analytic Torsion for Complex Manifolds, Ann. Math. 98 (1973), 154–177.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    C. Soulé, D. Abramovich, J.-F. Burnol and J. Kramer, Lectures on Arakelov Geometry, Cambridge University Press, Cambridge, 1992.zbMATHCrossRefGoogle Scholar
  34. [34]
    E. Spanier, Algebraic Topology, MacGraw-Hill, New York, 1966.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • John Lott
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations