Abstract

A question often asked in ecosystem studies is: What controls rates of release of plant-available nutrients? Nutrient elements are converted from unavailable to available forms through a wide variety of transformation processes (Stevenson 1986; Schlesinger 1991); however, there are some general cycling patterns that are common to all nutrients (Fig. 14.1). For example, most plant macronutrients exist in both organic and mineral forms. Therefore, the processes of mineralization (conversion of organic to mineral forms) and assimilation (conversion of mineral to organic forms) are common to these nutrients. Other nutrients also form insoluble compounds and, thus, dissolution and precipitation processes represent important pathways for release and immobilization of plant-available forms. While procedures used to measure concentrations of different nutrients vary considerably, the approaches used to measure these transformation rates are generally quite similar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D.; Melillo, J.M. Terrestrial ecosystems. San Francisco: Saunders; 1991.Google Scholar
  2. Anderson, J.P.E.; Domsch, K.H. Measurement of bacterial and fungal contributions to respiration of selected agricultural soils. Arch. Microbiol. 21:314–322; 1975.Google Scholar
  3. Balderston, W.L.; Sherr, B.; Payne, W.J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508; 1976.PubMedGoogle Scholar
  4. Barraclough, D.; Smith M.J. The estimation of mineralization, immobilization and nitrification in nitrogen-15 field experiments using computer simulation. J. Soil Sci. 38:519–530; 1987.CrossRefGoogle Scholar
  5. Barrie, A.; Davies, J.E.; Park, A.J.; Workman, C.T. Continuous-flow stable isotope analysis for biologists. Spectroscopy 4:44–52; 1989.Google Scholar
  6. Bedard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, , and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68–84; 1989.PubMedGoogle Scholar
  7. Belser, L.W.; Mays, E.L. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl. Environ. Microbiol. 39:505–510; 1980.PubMedGoogle Scholar
  8. Berg, P.; Klemedtsson, L.; Rosswall, T. Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol. Biochem. 14:301–303; 1982.CrossRefGoogle Scholar
  9. Berntson, G.M.; Aber, J.D. Fast nitrate immobilization in N saturated temperate forest soils. Soil Biol. Biochem. 32:151–156; 2000.CrossRefGoogle Scholar
  10. Betlach, M.R.; Tiedje, J.M.; Firestone, R.B. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch. Microbiol. 129:135–140; 1981.PubMedCrossRefGoogle Scholar
  11. Binkley, D.; Bell, R.; Sollins, P. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests. Can. J. For. Res. 22:858–863; 1992a.CrossRefGoogle Scholar
  12. Binkley, D.; Hart, S.C. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10:57–112; 1989.CrossRefGoogle Scholar
  13. Binkley, D.; Matson, P. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47:1050–1052; 1983.CrossRefGoogle Scholar
  14. Binkley, D.; Sollins, P.; Bell, R.; Sachs, D.; Myrold, D. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecol. 73:2022–2033; 1992b.CrossRefGoogle Scholar
  15. Bjarnason, S. Calculation of gross nitrogen immobilization and mineralization in soil. J. Soil Sci. 39:393–406; 1988.CrossRefGoogle Scholar
  16. Blackburn, T.H. Method for measuring rates of turnover in anoxic marine sediments Appl. Environ. Microbiol. 37:760–765; 1979.Google Scholar
  17. Boring, L.R.; Swank, W.T.; Waide, J.B.; Henderson, G.S. Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: Review and synthesis. Biogeochemistry 6:119–159; 1988.CrossRefGoogle Scholar
  18. Bormann, F.H.; Likens, G.E.; Melillo, J.M. Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science 196:981–983; 1977.PubMedCrossRefGoogle Scholar
  19. Bremner, J.M. Nitrogen-urea. In: Page, A.L., ed. Methods of Soil Analysis. Part 2. 2nd ed. Madison, WI: American Society of Agronomy; 1982:699–709.Google Scholar
  20. Burge, W.D.; Broadbent, F.E. Fixation of ammonia by organic soils. Soil Sci. Soc. Am. Proc. 25:199–204; 1961.CrossRefGoogle Scholar
  21. Davidson, E.A.; Hart, S.C.; Firestone, M.K. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156; 1992.CrossRefGoogle Scholar
  22. Davidson, E.A.; Hart, S.C.; Shanks, C.A.; Firestone, M.K. Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42:335–349; 1991.CrossRefGoogle Scholar
  23. Davidson, E.A.; Stark, J.M.; Firestone, M.K. Microbial production and consumption of nitrate in an annual grassland. Ecology 71:1968–1975; 1990.CrossRefGoogle Scholar
  24. Di Stefano, J; Gholz, H. A proposed use of ion exchange resin to measure nitrogen mineralization and nitrification in intact soil cores. Comm. Soil Sci. Plant Anal. 17:989–998; 1986.CrossRefGoogle Scholar
  25. Echevarria, G.; Morel, J.L.; Fardeau, J.C.; Leclerc-Cessac, E. Assessment of phytoavailability of nickel in soils. J. Environ. Qual. 27:1064–1070; 1998.CrossRefGoogle Scholar
  26. Eno, C.F. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Proc. 24:277–279; 1960.CrossRefGoogle Scholar
  27. Frossard, E.; Sinaj, S. The isotope exchange kinetic technique: A method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isotop Environ. Health Stud. 33:61–77; 1997.CrossRefGoogle Scholar
  28. Genetet, I.; Martin, F.; Stewart, G.R. Nitrogen assimilation in mycorrhizas: Ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiol. 76:395–399; 1984.PubMedCrossRefGoogle Scholar
  29. Gibson, D.J. Spatial and temporal heterogeneity in soil nutrient supply measured using in situ ion-exchange resin bags. Plant Soil 96:445–450; 1986.CrossRefGoogle Scholar
  30. Glibert, P.M.; Lipschultz, F.; McCarthy, J.J.; Altabet, M.A. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27:639–650; 1982.CrossRefGoogle Scholar
  31. Gordon, A.; Tallas, M.; Van Cleve, K. Soil incubations in polyethylene bags: Effect of bag thickness and temperature on nitrogen transformations and CO2 permeability. Can. J. Soil Sci. 67:65–75; 1987.CrossRefGoogle Scholar
  32. Handley, L.L.; Raven, J.A. The use of natural abundance of nitrogen isotopes in plant physiology and Ecology. Plant Cell Environ. 15:965–985; 1992.CrossRefGoogle Scholar
  33. Hart, S.C.; Firestone, M.K. Evaluation of three in situ soil nitrogen availability assays. Can. J. For. Res. 19:185–191; 1989.CrossRefGoogle Scholar
  34. Hart, S.C.; Nason, G.E.; Myrold, D.D.; Perry, D.A. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology 75:880–891; 1994a.CrossRefGoogle Scholar
  35. Hart, S.C.; Stark, J.M.; Davidson, E.A.; Firestone, M.K. Nitrogen mineralization, immobilization, and nitrification. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 985–1018; 1994b.Google Scholar
  36. He, Z.L.; Zhu, J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils. Nutr. cycl. agroecosyst. 51:209–215; 1998.CrossRefGoogle Scholar
  37. Herman, D.J.; Rundel, P.W. Nitrogen isotope fractionation in burned and unburned chaparral soils. Soil Sci. Soc. Am. J. 53:1229–1236; 1989.CrossRefGoogle Scholar
  38. Kirkham, D.; Bartholomew, W.V. Equations for followin nutrient transformations in soils, utilizing tracer data. Soil Sci. Soc. Proc. 18:33–34; 1954.CrossRefGoogle Scholar
  39. Klubek, B.; Skujins, J. Gaseous nitrogen losses from 15N-ammonium and plant material amended great basin desert surface soils. Geomicrobiol. J. 2:225–236; 1981.CrossRefGoogle Scholar
  40. Knowles, R.; Blackburn, T.H. Nitrogen isotope techniques. San Diego: Academic; 1993.Google Scholar
  41. Kuo, S. Phosphorus. In: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E., eds. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America; 3:869–919; 1996.Google Scholar
  42. Ladha, J.K.; Peoples, M.B.; Garrity, D.P.; Capuno, V.T.; Dart, P.J. Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method. Soil Sci. Soc. Am. J. 57:732–737; 1993.CrossRefGoogle Scholar
  43. Lajtha, K.; Michener, R., eds. Stable Isotopes in Ecology. Oxford: Blackwell; 1994.Google Scholar
  44. Low, A.P.; Stark, J.M.; Dudley, L.M. Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Sci. 162:16-27; 1997.Google Scholar
  45. Lynch, J.M.; Whipps, J.M. Substrate flow in the rhizosphere. Plant Soil 129:1–10; 1990.CrossRefGoogle Scholar
  46. Mary, B.; Recous, S.; Robin, D. A model for calculating nitrogen fluxes in soil using 15N tracing. Soil Biol. Biochem. 30:1963–1979; 1998.CrossRefGoogle Scholar
  47. Milchunas, D.G.; Lauenroth, W.K. Carbon dynamics and estimates of primary production by harvest, 14C dilution, and 14C turnover. Ecology 73:593–607; 1992.CrossRefGoogle Scholar
  48. Mosier, A.R.; Klemedtsson, L. Measuring denitrification in the field. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 1047–1066; 1994.Google Scholar
  49. Myrold, D.D.; Tiedje, J.M. Simultaneous estimation of several nitrogen cycle rates using 15N: theory and application. Soil Biol. Biochem. 18:559–568; 1986.CrossRefGoogle Scholar
  50. Nadelhoffer, K.J.; Aber, J.D.; Melillo, J.M. Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems. Plant Soil 80:321–335; 1984.CrossRefGoogle Scholar
  51. Nohrstedt, H.-O. Natural formation of ethylene in forest soils and methods to correct results given by the acetylene-reduction assay. Soil Biol. Biochem. 15:281–286; 1983.CrossRefGoogle Scholar
  52. Nommik, H.; Vahtras, K. Retention and fixation of ammonium and ammonia in soils. In: Stevenson, F.J., ed. Nitrogen in Agricultural Soils. Madison, WI: American Society of Agronomy; 1982:123–171.Google Scholar
  53. Oremland, R.S.; Capone, D.G. Use of “specific” inhibitors in Biogeochemistry and microbial Ecology. Adv. Microbial Ecol. 10:285–383; 1988.CrossRefGoogle Scholar
  54. Oremland, R.S.; Culbertson, C.W. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl. Environ. Microb. 58:2983–2992; 1992.Google Scholar
  55. Peterjohn, W.T.; Schlesinger, W.H. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79; 1990.CrossRefGoogle Scholar
  56. Pichtel, J.R.; Dick, W.A. Influence of biological inhibitors on the oxidation of pyritic mine spoil. Soil Biol. Biochem. 23:109–116; 1991.CrossRefGoogle Scholar
  57. Raich, J.W.; Nadelhoffer, K.J. Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70:1346–1354; 1989.CrossRefGoogle Scholar
  58. Rice, C.W.; Tiedje, J.M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil. Biol. Biochem. 21:597–602; 1989.CrossRefGoogle Scholar
  59. Robertson, G.P.; Vitousek, P.M. Nitrification potentials in primary and secondary succession. Ecol. 62:376–386; 1981.CrossRefGoogle Scholar
  60. Rudolph, J.; Koschorreck, M.; Conrad, R. Oxidative and reductive microbial consumption of nitric oxide in a heathland soil. Soil Biol. Biochem. 28:1389–1396; 1996.CrossRefGoogle Scholar
  61. Scheu, S.; Parkinson, D. Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Boil. Biochem. 26:1515–1525; 1994.CrossRefGoogle Scholar
  62. Schimel, D.S. Theory and Application of Tracers. San Diego, CA: Academic; 1993.Google Scholar
  63. Schimel, J.P. Assumptions and errors in the pool dilution technique for measuring mineralization and immobilization. Soil Biol. Biochem. 28:827–828; 1996.CrossRefGoogle Scholar
  64. Schimel, J.P.; Firestone, M.K. Inorganic N incorporation by coniferous forst floor material. Soil Biol. Biochem. 21:41–46; 1989.CrossRefGoogle Scholar
  65. Schimel, J.P.; Firestone, M.K.; Killham, K.S. Identification of heterotrophic nitrification in a sierran forest soil. Appl. Environ. Microbiol. 48:802–806; 1984.PubMedGoogle Scholar
  66. Schimel, J.P.; Jackson, L.E.; Firestone, M.K. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California grassland. Soil Biol. Biochem. 21:1059–1066; 1989.CrossRefGoogle Scholar
  67. Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change. San Diego, CA: Academic; 1991.Google Scholar
  68. Schlesinger, W.H.; Peterjohn, W.T. Processes controlling ammonia volatilization from Chihuahuan desert soils. Soil Biol. Biochem. 23:637–642; 1991.CrossRefGoogle Scholar
  69. Shearer, G.; Duffy, J.; Kohl, D.H.; Commoner, B. A steady-state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Sci. Soc. Am. Proc. 38:315–322; 1974.CrossRefGoogle Scholar
  70. Shearer, G.; Kohl, D.H. N2-fixation in field settings: Estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13:699–756; 1986.Google Scholar
  71. Shearer, G.; Kohl, D.H.; Chien, S.H. The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am J. 42:899–902; 1978.CrossRefGoogle Scholar
  72. Sibbeson, E.A. Simple ion-exchange resin procedure for extracting plant available elements from soil. Plant Soil 46:665–669; 1977.CrossRefGoogle Scholar
  73. Sinaj, S.; Frossard, E.; Fardeau, J.C. Isotopically exchangeable phosphate in size fractionated and unfractionated soils. Soil Sci. Soc. Am. J. 61:1413-1417; 1997.Google Scholar
  74. Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E., eds. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America; 1996.Google Scholar
  75. Stanford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36:465–472; 1972.CrossRefGoogle Scholar
  76. Stark, J.M.; Firestone, M.K. Isotopic labeling of soil nitrate pools using nitrogen-15-nitric oxide gas. Soil Sci. Soc. Am. J. 59:844–847; 1995.CrossRefGoogle Scholar
  77. Stark, J.M.; Firestone, M.K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol. Biochem. 28:1307–1317; 1996.CrossRefGoogle Scholar
  78. Stark, J.M.; Hart, S.C. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci. Soc. Am. J. 60:1846–1855; 1996.CrossRefGoogle Scholar
  79. Stark, J.M.; Hart, S.C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64; 1997.CrossRefGoogle Scholar
  80. Steffens, D.; Sparks, D.L. Kinetics of nonexchangeable ammonium release from soils. Soil Sci. Soc. Am. J. 61:455–462; 1997.CrossRefGoogle Scholar
  81. Stevenson, F.J. Cycles of soil. New York: Wiley; 1986.Google Scholar
  82. Subler, S.; Blair, J.M.; Edwards, CA. Using anion exchange membranes to measure soil nitrate availability and net nitrification. Soil Biol. Biochem. 27:911–917; 1995.CrossRefGoogle Scholar
  83. Tabatabai, M.A. Soil enzymes. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:775–834; 1994.Google Scholar
  84. Tann, C.C.; Skujins, J. Soil nitrogenase assay by 14C-acetylene reduction: Comparison with the carbon monoxide inhibition method. Soil Biol. Biochem. 17:109–112; 1985.CrossRefGoogle Scholar
  85. Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Zehnder, A.J.B., ed. Biology of Anaerobic Microorganisms. New York: Wiley; 1988:179–244.Google Scholar
  86. Tietema, A.; Van Dam, D. Calculating microbial carbon and nitrogen transformations in acid forest litter with 15N enrichment and dynamic simulation modelling. Soil Biol. Biochem. 28:953–965; 1996.CrossRefGoogle Scholar
  87. Van Cleve, K.; Coyne, P.I.; Goodwin, E.; Johnson, C.; Kelley, M. A comparison of four methods for measuring respiration in organic material. Soil Biol. Biochem. 11:237–246; 1979.CrossRefGoogle Scholar
  88. Vitousek, P.M.; Andariese, S.W. Microbial transformations of labeled nitrogen in a clear-cut pine plantation. Oecologia 68:601–605; 1986.CrossRefGoogle Scholar
  89. Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., editors. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 1994.Google Scholar
  90. Weaver, R.W.; Danso, S.K.A. Dinitrogen fixation. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:1019–1046; 1994.Google Scholar
  91. Wolf, D.C.; Legg, J.O.; Boutton, T.W. Isotopic methods for the study of soil organic matter dynamics. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:865–906; 1994.Google Scholar
  92. Wolf, D.C.; Skipper, H.D. Soil sterilization. In: Weaver, R.W.; Angle, S.; Bottomley, P.; Bezdicek, D.; Smith, S.; Tabatabai, A.; Wollum, A., eds. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Madison, WI: Soil Science Society of America; 2:41–52; 1994.Google Scholar
  93. Zou, X.; Valentine, D.W.; Sanford, R.L., Jr.; Binkley, D. Resin-core and buried-bag estimates of nitrogen transformations in Costa Rican lowland rainforests. Plant Soil. 139:275–283; 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • John M. Stark

There are no affiliations available

Personalised recommendations