Advertisement

Bifurcation Analysis for Timesteppers

  • Laurette S. Tuckerman
  • Dwight Barkley
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 119)

Abstract

A collection of methods is presented to adapt a pre-existing timestepping code to perform various bifurcation-theoretic tasks. It is shown that the implicit linear step of a time-stepping code can serve as a highly effective preconditioner for solving linear systems involving the full Jacobian via conjugate gradient iteration. The methods presented for steady-state solving, continuation, direct calculation of bifurcation points (all via Newton’s method), and linear stability analysis (via the inverse power method) rely on this preconditioning. Another set of methods can have as their basis any time-stepping method. These perform various types of stability analyses: linear stability analysis via the exponential power method, Floquet stability analysis of a limit cycle, and nonlinear stability analysis for determining the character of a bifurcation. All of the methods presented require minimal changes to the time-stepping code.

Key words

bifurcation analysis continuation Stokes preconditioning Newton’s method Arnoldi’s method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.E. Arnoldi,The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math. 9 (1951), 17–29.Google Scholar
  2. [2]
    D. Barkley and L.S. Tuckerman, Traveling waves in axisymmetric convection: the role of sidewall conductivity, Physica D 37 (1989), 288–294.MathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Barkley and R. Henderson, Floquet stability analysis of the periodic wake of a circular cylinder, J. Fluid Mech. 322 (1996), 215–241.zbMATHCrossRefGoogle Scholar
  4. [4]
    D. Barkley and L.S. Tuckerman, Stokes preconditioning for the inverse power method, in Lecture Notes in Physics: Proc. of the Fifteenth Int’l. Conf. on Numerical Methods in Fluid Dynamics, P. Kutler, J. Flores, and J.-J. Chattot, eds., Springer, New York, 1997, 75–76.Google Scholar
  5. [5]
    D. Barkley and L.S. Tuckerman, Stability analysis of perturbed plane Couette flow, Phys. Fluids, submitted (1998).Google Scholar
  6. [6]
    D. Barkley, M.G.M. Gomes, and R. Henderson, Three-dimensional stability analysis of flow over a backward facing step, J. Fluid Mech., submitted (1998).Google Scholar
  7. [7]
    A. Bergeon, D. Henry, H. Benhadid, and L.S. Tuckerman, Marangoni convection in binary mixtures with Soret effect, J. Fluid Mech., in press (1998).Google Scholar
  8. [8]
    F. Bertagnolio, L.S. Tuckerman, P. Le QUéRé, and O. Daube, Calculation of leading eigenmodes in natural convection by the inverse power method with Stokes preconditioning, Scientific report, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, Orsay, 1998.Google Scholar
  9. [9]
    E. ChéNIER, Etude de la stabilité linéaire des écoulements thermocapillaries et thermogravitationnels en croissance cristalline Thesis, Université de Paris XI; Notes et Documents LIMSI No. 97–26, 1997.Google Scholar
  10. [10]
    K.N. Christodoulou and L.E. Scriven, Finding leading modes of a viscous free surface flow: an asymmetric generalized eigenproblem, J. Sci. Comput. 3 (1988), 355–406.Google Scholar
  11. [11]
    I. Goldhirsch, S.A. Orszag and B.K. Maulik, An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices, J. Sci. Comput. 2 (1987), 33–58.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    R.D. Henderson and D. Barkley, Secondary instability in the wake of a circular cylinder, Phys. Fluids 8 (1996), 1683–1685.zbMATHCrossRefGoogle Scholar
  13. [13]
    Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1995.zbMATHGoogle Scholar
  14. [14]
    K. Lust, Numerical bifurcation analysis of periodic solutions of partial differential equations, PhD thesis, Katholieke Universiteit Leuven, 1997.Google Scholar
  15. [15]
    C.K. Mamun and L.S. Tuckerman, Asymmetry and Hopf bifurcation in spherical Couette ffow, Phys. of Fluids 7 (1995), 80–91.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    P.S. Marcus and L.S. Tuckerman, Numerical simulation of spherical Couette ffow. Part I: Numerical methods and steady states, J. Fluid Mech. 185 (1987), 1–30.zbMATHCrossRefGoogle Scholar
  17. [17]
    P.S. Marcus and L.S. Tuckerman, Numerical simulation of spherical Couette ffow. Part II: Transitions, J. Fluid Mech. 185 (1987), 31–65.zbMATHCrossRefGoogle Scholar
  18. [18]
    D.R. Kincaid, T.C. Oppe, and W.D. Joubert, An overview ofNSPCG: A nonsymmetric preconditioned conjugate gradient package, Report CNA-228, Center for Numerical Analysis, University of Texas at Austin, 1988.Google Scholar
  19. [19]
    Y. Saad,Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Alg. Appl. 34 (1980), 269–295.Google Scholar
  20. [20]
    M.F. Schatz, D. Barkley, and H.L. Swinney, Instabilities in spatially periodic channel ffow, Phys. Fluids 7 (1995), 344–358.CrossRefGoogle Scholar
  21. [21]
    R. Seydel, Practical Bifurcation and Stability Analysis, Second edition, Springer, New York, 1994.zbMATHGoogle Scholar
  22. [22]
    R. Touihri Stabilité des écoulements dans une cavité cylindrique chauffée par le bas en présence d’un champ magnétique, Thesis, Ecole Centrale de Lyon, 1998.Google Scholar
  23. [23]
    L.S. Tuckerman and D. Barkley, Global bifurcation to travelling waves in axisymmetric convection, Phys. Rev. Lett. 61 (1988), 408–411.CrossRefGoogle Scholar
  24. [24]
    L.S. Tuckerman, Steady-state solving via Stokes preconditioning; recursion relations for elliptic operators, in Lecture Notes in Physics: Proc. of the Eleventh Int’l. Conf. on Numerical Methods in Fluid Dynamics, D.L. Dwoyer, M.Y. Hussaini, and R.G. Voigt, eds., Springer, New York, 1989, 573–577.CrossRefGoogle Scholar
  25. [25]
    S. Xin, P. Le QUéRé, and L.S. Tuckerman, Bifurcation analysis of doublediffusive convection with opposing horizontal thermal and solutal gradients Phys. of Fluids. 10 (1998), 850–858.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Laurette S. Tuckerman
    • 1
  • Dwight Barkley
    • 2
  1. 1.LIMSIOrsayFrance
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations