Peritoneum, Peritoneal Healing, and Adhesion Formation

  • Gere S. DiZerega


Peritoneum is the most extensive serous membrane in the body. The surface area of the peritoneum is generally equal to that of the skin (Table 1.1). 1 It forms a closed sac in the male and an open sac in the female because the ends of the fallopian tubes are not covered by peritoneum. The peritoneum lines the walls of the abdomen (parietal peritoneum) and is reflected over the viscera (visceral peritoneum). It consists of two layers, a loose connective tissue and a mesothelium. The connective tissue is arranged into loose bundles that interlace in a plane parallel to the surface. There are numerous elastic fibers, especially in the deeper layer of the parietal peritoneum, and comparatively few connective tissue cells. The peritoneum serves to minimize friction, facilitating free movement between abdominal viscera, to resist or localize infection, and to store fat, especially in the greater omentum.


Mesothelial Cell Peritoneal Fluid Adhesion Formation Parietal Peritoneum Ultrasonic Scalpel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esperanca JM, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg 1966; 1:162–169.CrossRefGoogle Scholar
  2. 2.
    Bloom W, Fawcett DW. A Textbook of Histology, 9th Ed. Philadelphia: Saunders, 1968:186–187.Google Scholar
  3. 3.
    Robbins SL. A Textbook of Histology, 3rd Ed. Philadelphia: Saunders, 1967:891–896.Google Scholar
  4. 4.
    Watters WB, Buck RC (1972) Scanning electron microscopy of mesothelial regeneration in the rat. Lab Invest 26:604–609.PubMedGoogle Scholar
  5. 5.
    Pfeiffer CJ, Pfeiffer DC, Misra HP. Enteric serosal surface in the piglet. A scanning and transmission electron microscopic study of the mesothelium. J Submicrosc Cytol 1987; 19:237–246.PubMedGoogle Scholar
  6. 6.
    Dobbie JW. New concepts in molecular biology and ultra-structural pathology of the peritoneum: their significance of peritoneal dialysis. Am J Kidney Dis 1990; 15:97–109.PubMedGoogle Scholar
  7. 7.
    Berndt WO, Gosselin RE. Rubidium and creatinine transport across isolated mesentery. Biochem Pharmacol 1961; 8:359–366.PubMedCrossRefGoogle Scholar
  8. 8.
    Gosselin RE, Berndt WO. Diffusional transport of solute through mesentery and peritoneum. J Theor Biol 1962; 3:487–495.CrossRefGoogle Scholar
  9. 9.
    Fukata H. Electron microscopic study on normal rat peritoneal mesothelium and its changes in absorption of par-ticulate iron dextran complex. Acta Pathol Jpn 1963; 13:309–325.PubMedGoogle Scholar
  10. 10.
    Shear J, Harvey JD, Barry KG. Peritoneal sodium transport; enhancement by pharmacologic and physical agents. J Lab Clin Med 1966; 67:181–188.PubMedGoogle Scholar
  11. 11.
    Cotran RS, Karnovsky JJ. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxi-dase. J Cell Biol 1968; 37:123–137.PubMedCrossRefGoogle Scholar
  12. 12.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat 1941; 69:439–497.CrossRefGoogle Scholar
  13. 13.
    Atkinson M, Losowsky MS. Mechanism of ascites formation in chronic liver disease. Clin Sci 1962; 22:383–389.PubMedGoogle Scholar
  14. 14.
    Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium: the ultrastructural bases for “stomata.” Am J Anat 1978; 151:557–569.PubMedCrossRefGoogle Scholar
  15. 15.
    Lill SR, Parsons RH, Buchac I. Permeability of the diaphragm and fluid rsorption from the peritoneal cavity in the rat. Gastroenterology 1979; 76:997–1002.PubMedGoogle Scholar
  16. 16.
    MacCallum WG. On the mechanism of absorption of granular material from the peritoneum. Johns Hopkins Hosp Bull 1903; 14:105–112.Google Scholar
  17. 17.
    Allen L. The peritoneal stomata. Anat Rec 1936; 67:89–99.CrossRefGoogle Scholar
  18. 18.
    French JE, Florey HW, Morris B. The absorption of particles by the lymphatics of the diaphragm. J Exp Physiol 1960; 45:88–93.Google Scholar
  19. 19.
    Leak LV. The adhesion of peritoneal cells to the diaphragmatic mesothelium. Bibl Anat 1979; 17:115–124.PubMedGoogle Scholar
  20. 20.
    Murphy MJ, Morris B. A study of the peritoneal surface of the diaphragm by steroscan electron microscopy. In: Grenoble FP (ed) Microscopie Electronique, Vol. 3. Paris, France: Société française de Microscopie électronique, 1970:587–592.Google Scholar
  21. 21.
    Tsilibury EC, Wissig SL. Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149:127–133.CrossRefGoogle Scholar
  22. 22.
    diZerega GS, Rodgers K. Peritoneal fluid. In: The Peritoneum. New York: Springer-Verlag, 1990:26–52.Google Scholar
  23. 23.
    Bercovici B, Gallily R. The cytology of the human peritoneal fluid. Acta Cytol 1978; 22:197–207.Google Scholar
  24. 24.
    McGowan L, Davis RH, Stein DB, et al. The cytology of the pelvic peritoneal cavity in normal women. Am J Clin Pathol 1968; 49:506–511.PubMedGoogle Scholar
  25. 25.
    McGowan L, Davis RH. Peritoneal fluid cellular patterns in obstetrics and gynecology. Am J Clin Gynecol 1970; 106:979–995.Google Scholar
  26. 26.
    Diegelmann RF, Cohen IK, Kaplan AM. The role of macrophages in wound repair: a review. Plast Reconstr Surg 1981; 68:107–113.PubMedCrossRefGoogle Scholar
  27. 27.
    ArRajab A, Dawidson I, Sentementes J, et al. Enhancement of peritoneal macrophages reduces postoperative peritoneal adhesion formation. J Surg Res 1995; 58:307–312.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodgers KE, diZerega GS. Modulation of peritoneal reep-ithelialization by postsurgical macrophages. J Surg Res 1992; 53:542–548.PubMedCrossRefGoogle Scholar
  29. 29.
    Fukasawa M, Yanagihara D, Rodgers KE, diZerega GS. The mitogenic activity of peritoneal tissue repair cells: control by growth factors. J Surg Res 1989; 47:45–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Orita H, Campeau JD, Gale J, et al. Modulation of f ibro-blast proliferation and transformation by activated macrophages during postoperative peritoneal reepithelializa-tion. Am J Obstet Gynecol 1986; 155:905–911.PubMedGoogle Scholar
  31. 31.
    Leibovich SJ, Ross R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 1976; 84:501–514.PubMedGoogle Scholar
  32. 32.
    diZerega GS. The peritoneum and its response to surgical injury. In: di Zerega GS, Malinak LR, Diamond MP, Linsky CB, eds. Treatment of Post Surgical Adhesions. Prog Clin Biol Res 1990; 358:1–11.Google Scholar
  33. 33.
    Itskovitz-Eldor J, Kol S, Lewit N, Sealey JE. Ovarian origin of plasma and peritoneal fluid prorenin in early pregnancy and in patients with ovarian hyperstimulation syndrome. J Clin Endocrinol Metab 1997; 82:461–464.PubMedCrossRefGoogle Scholar
  34. 34.
    Chacho K, Chacho S, Andersen P, Scommegna A. Peritoneal fluid in patients with and without endometriosis: prostanoids and macrophages and their effect on the spermatozoa penetration assay. Am J Obstet Gynecol 1986; 154:1290–1297.PubMedGoogle Scholar
  35. 35.
    DeLeon F, Vijayakumar R, Brown M, Rao C, Yussman M, Schultz G. Peritoneal fluid volume, estrogen, progesterone, prostaglandin, and epidermal growth factor concentrations in patients with and without endometriosis. Obstet Gynecol 1986; 68:189–193.PubMedGoogle Scholar
  36. 36.
    Halme J. Release of tumor necrosis factor-alpha by human peritoneal macrophages in vivo and in vitro. Am J Obstet Gynecol 1989; 161:1718–1725.PubMedGoogle Scholar
  37. 37.
    Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-ß activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol 1994; 83:287–292.PubMedGoogle Scholar
  38. 38.
    Fakih H, Bagget B, Holtz G, Tsang KY, Lee J, Williamson H. Interleukin-1: possible role in the infertility associated with endometriosis. Fertil Steril 1987; 47:213–217.PubMedGoogle Scholar
  39. 39.
    Arici A, Tazuke SI, Attar E, Kilman HJ, Olive DL (1996) Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod 2:40–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Oral EP, Arid A. Peritoneal growth factors and endometriosis. Semin Reprod Endocrinol 1996; 14:257–267.PubMedCrossRefGoogle Scholar
  41. 41.
    Halme J, Becker S, Haskill S. Altered maturation and function of peritoneal macrophages: possible role in pathogen-esis of endometriosis. Am J Obstet Gynecol 1987; 136:783–789.Google Scholar
  42. 42.
    Werb Z. Phagocytic cells: chemotaxis and effector functions of macrophages and granulocytes. In: Daniel S, Stobo J, Wells V, eds. Basic and Clinical Immunology, Vol. 6. Norwalk: Appleton & Lange, 1987:96–113.Google Scholar
  43. 43.
    Hill JA, Faris H, Schiff I, Anderson D. Characterization of leukocyte subpopulations in the peritoneal fluid of women with endometriosis. Fertil Steril 1988; 50:216–222.PubMedGoogle Scholar
  44. 44.
    Akoum A, Lemay A, McColl S, Turcot-Lemay L, Maheux R. Elevated concentration and biologic activity of mono-cyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril 1996; 66:17–23.PubMedGoogle Scholar
  45. 45.
    Mori H, Swairi M, Nakagawa M, Itoh N, Wada K, Tamaya T. Peritoneal fluid interleukin-1 beta and tumor necrosis factor in patients with benign gynecologic disease. Am J Reprod Immunol 1991; 26:62–67.PubMedGoogle Scholar
  46. 46.
    Liu J, Lian LJ, Wang YF, et al. The immunological study of patients with endometriosis. Contrib Gynecol Obstet 1987; 16:66–72.PubMedGoogle Scholar
  47. 47.
    Badawy SZ, Cuenca V, Stitzel A, et al. The regulation of im-munoglobulin production by B cells in patients with endometriosis. Fertil Steril 1989; 51:770–773.PubMedGoogle Scholar
  48. 48.
    Badawy SZ, Cuenca V, Kaufman L, et al. The regulation of immunoglobulin production by B cells in patients with endometriosis. Fertil Steril 1989; 51:770–773.PubMedGoogle Scholar
  49. 49.
    Badawy SZ, Cuenca V, Marshall L, et al. Cellular components in peritoneal fluid in infertile patients with and without endometriosis. Fertil Steril 1984; 42:701–708.Google Scholar
  50. 50.
    Meek SC, Hodge DD, Musich JR. Autoimmunity in infertile patients with endometriosis. Am J Obstet Gynecol 1988; 158:1365–1373.PubMedGoogle Scholar
  51. 51.
    Confino E, Harlow L, Gleicher N. Peritoneal fluid and serum autoantibody levels in patients with endometriosis. Fertil Steril 1990; 53:242–245.PubMedGoogle Scholar
  52. 52.
    Garza D, Mathur S, Dowd MM, et al. Antigenic differences between the endometrium of women with and without endometriosis. J Reprod Med 1991; 36:177–182.PubMedGoogle Scholar
  53. 53.
    Fernandez-Shaw S, Hicks BR, Judkin PL, et al. Anti-en-dometrial and anti-endothelial auto-antibodies in women with endometriosis. Hum Reprod (Oxf) 1993; 8:310–315.Google Scholar
  54. 54.
    Dorr PJ, Brommer EJP, Dooijewaard G, et al. Peritoneal fluid and plasma f ibrinolytic activity in women with pelvic inflammatory disease. Thromb Haemostasis 1992; 68:102–105.Google Scholar
  55. 55.
    Nissell H, Larsson B. Role of blood and fibrinogen in development of intraperitoneal adhesions in rats. Fertil Steril 1978; 30:470–473.Google Scholar
  56. 56.
    Larsson B. Prevention of postoperative formation and reformation of pelvic adhesions. In: Treutner KH, Schumpleck V, eds. Peritoneal Adhesions. Berlin: Springer, 1997.Google Scholar
  57. 57.
    Rosenberg L. Tronstad SE, Sponland G, et al. Results of electromicrosurgery in 78 women for correction of infertility. A two-center comparative study. Infertility 1982; 5:35–41.Google Scholar
  58. 58.
    Swolin K. Die einwirkung von grossen, intraperitoneal en dusen glukortikiod auf die bildung von postoperative ad-hesionen. Acta Obstet Gynecol Scand 1967; 46:204–209.PubMedCrossRefGoogle Scholar
  59. 59.
    Querleu D, Vankeerberghen-Deffense F, Boutteville C. Traitement adjuvant des plasties tubaires. J Gynecol Ob-stet Biol Reprod 1989; 18:935–940.Google Scholar
  60. 60.
    Williams PL, Warwick R, Dyson M, Bannister LH, eds. Gray’s Anatomy. Edinburgh: Churchill Livingstone, 1989.Google Scholar
  61. 61.
    Hollinshead HW. The thorax, abdomen, and pelvis. In: Anatomy for Surgeons, Vol. 2. New York: Harper & Row, 1978:78–161.Google Scholar
  62. 62.
    Wakefield EG, Mayo CW. Intestinal obstruction produced by mesenteric bands in association with failure of intestinal rotation. Arch Surg 1936; 33:47–67.CrossRefGoogle Scholar
  63. 63.
    Mitchell GAG. The spread of acute intraperitoneal effusions. Br J Surg 1941; 28:291–296.CrossRefGoogle Scholar
  64. 64.
    Ahrenholz DH, Simmons RL. Peritonitis and other intra-abdominal infections. In: Howard RF, Simmons RL, eds. Surgical Infectious Disease, 2nd Ed. Norwalk: Appleton & Lange, 1988:605–646.Google Scholar
  65. 65.
    Hertzler AE. The Peritoneum. St. Louis: Mosby, 1919.Google Scholar
  66. 66.
    Bigatti G. Neoangigogenesis in Adhesion Formation and Peritoneal Healing. Berlin: Springer, 1997.Google Scholar
  67. 67.
    Ellis H, Harrison W, Hugh TB. The healing of peritoneum under normal and pathological conditions. Br J Surg 1965; 52:471–476.PubMedCrossRefGoogle Scholar
  68. 68.
    Hubbard TB, Khan MZ, Carag VR, Albites VE, Hricko GM. The pathology of peritoneal repair: its relation to the formation of adhesions. Ann Surg 1967; 165:908–916.PubMedCrossRefGoogle Scholar
  69. 69.
    Glucksman DL. Serosal integrity and intestinal adhesions. Surgery (St. Louis) 1966; 60:1009–1011.Google Scholar
  70. 70.
    Eskeland G. Regeneration of parietal peritoneum in rats. I. A light microscopical study. Acta Pathol Microbiol Scand 1966; 68:355–378.PubMedGoogle Scholar
  71. 71.
    Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 1973; 115:375–392.PubMedGoogle Scholar
  72. 72.
    Devens K, Recurrent intestinal obstruction in the neonatal period. Arch Dis Child 1963; 38:118–119.PubMedCrossRefGoogle Scholar
  73. 73.
    Raftery AT. Regeneration of parietal and visceral peritoneum. A light microscopical study. Br J Surg 1973; 60:293–299.PubMedCrossRefGoogle Scholar
  74. 74.
    Johnson FR, Whitting HW. Repair of parietal peritoneum. Br J Surg 1962; 49:653–660.PubMedCrossRefGoogle Scholar
  75. 75.
    Brunschwig A, Robbins GF. Regeneration of peritoneum: experimental observations and clinical experience in radical resections of intra-abdominal cancer. In: XVth Congress of the Society of International Chirurgie, Lisbonne, 1953. Bruxelles: Henri de Smedt, 1954:756–765.Google Scholar
  76. 76.
    diZerega GS, Rodgers K. Fibroblasts and tissue repair cells. In: The Peritoneum. New York: Springer-Verlag, 1990: 122–144.Google Scholar
  77. 77.
    Hott JW, Godbey SW, Antony VB. Mesothelial cell modulation of pleural repair: thrombin stimulated mesothelial cells release prostaglandin E2. Prostaglandins Leukot Es-sent Fatty Acids 1994; 51:329–335.CrossRefGoogle Scholar
  78. 78.
    Robbins GF, Brunschwig A, Foote FW. Deperitonealiza-tion: clinical and experimental observations. Ann Surg 1949; 130:466–479.CrossRefGoogle Scholar
  79. 79.
    Lucas PA, Warejcka DJ, Young HE, et al. Formation of abdominal adhesion is inhibited by antibodies to transforming growth factor-ßl. J Surg Res 1996; 65:135–138.PubMedCrossRefGoogle Scholar
  80. 80.
    Witz CA, Montoya-Rodriguez IA, Bena BS, et al. Mesothe-lium expression of integrins in vivo and in vitro. J Soc Gy-necol Invest 1998; 5:87–93.CrossRefGoogle Scholar
  81. 81.
    Elkins TE, Stovall TG, Warren J, Ling FW, Meyer NL. A histologic evaluation of peritoneal injury and repair: implications for adhesion formation. Obstet Gynecol 1987; 70:225–228.PubMedGoogle Scholar
  82. 82.
    Bellina JH, Hemmings R, Voros JI, Ross LF. Carbon dioxide laser and electrosurgical wound study with an animal model: a comparison of tissue damage and healing patterns in peritoneal tissue. Am J Obstet Gynecol 1984; 148:327–334.PubMedGoogle Scholar
  83. 83.
    Filmar S, Jeta N, McComb P, et al. A comparative histologic study on the healing process following tissue transec-tion: Part I. CO2 laser and electromicrosurgery. Am J Obstet Gynecol 1989; 160:1068–1072.PubMedGoogle Scholar
  84. 84.
    Montgomery TC, Sharp JB, Bellina H, Ross LF. Comparative gross and histological study of the effects of scalpel, electric knife and carbon dioxide laser on skin and uterine incisions in dogs. Lasers Surg Med 1983; 3:9–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Weibel MA, Majno G. Peritoneal adhesions and their relation to abdominal surgery. A postmortem study. Am J Surg 1973; 126:345–353.PubMedCrossRefGoogle Scholar
  86. 86.
    Perry JF Jr, Smith GA, Yonehiro EG. Intestinal obstruction caused by adhesions. A review of 388 cases. Ann Surg 1955; 142:810–816.CrossRefGoogle Scholar
  87. 87.
    Raf LE. Causes of abdominal adhesion in cases of intestinal obstruction. Acta Chir Scand 1969; 135:73–76.PubMedGoogle Scholar
  88. 88.
    Nemir P. Intestinal obstruction; ten year survey at the Hospital of the University of Pennsylvania. Ann Surg 1952; 135:367–375.PubMedCrossRefGoogle Scholar
  89. 89.
    Menzies D, Ellis H. Adhesion formation: the role of plas-minogen activator. Surg Gynecol 1991; 172:362–366.Google Scholar
  90. 90.
    Wilkins BM, Spitz L. Incidence of postoperative adhesion obstruction following neonatal laparotomy. Br J Surg 1986; 73:762–764.PubMedCrossRefGoogle Scholar
  91. 91.
    Adhesion Study Group. Reduction of postoperative pelvic adhesions with intraperitoneal 32% dextran 70: a prospective, randomized clinical trial. Fertil Steril 1983; 40:612–619.Google Scholar
  92. 92.
    Interceed (TC7) Adhesion Barrier Group. Prevention of postsurgical adhesions by Interceed (TC7), an absorbable adhesion barrier: a prospective randomized multicenter clinical study. Fertil Steril 1989; 51:933–938.Google Scholar
  93. 93.
    Diamond MP, Daniell JF, Feste J. Adhesion reformation and de novo adhesion formation after reproductive pelvic surgery. Fertil Steril 1987; 47:864–866.PubMedGoogle Scholar
  94. 94.
    Szigetvari I, Feinman M, Barad D, et al. Association of previous abdominal surgery and significant adhesions in laparoscopic sterilization patients. J Reprod Med 1989; 34:465–498.PubMedGoogle Scholar
  95. 95.
    DeCherney AH, Mezer HC. The nature of posttuboplasty pelvic adhesions as determined by early and late laparos-copy. Fertil Steril 1984; 41:643–646.Google Scholar
  96. 96.
    Ali V, Newton E, Miller I, Sri I. Frequency of abdominal and pelvic adhesion after Cesarean section (abstract S63). J Am Assoc Gynecol Laparosc 1997; 4(suppl 4):563.Google Scholar
  97. 97.
    Browne AH, Hynes T. Multiple repeat caesarean section. J Obstet Gynaecol Br Commonw 1965; 72:693–699.PubMedCrossRefGoogle Scholar
  98. 98.
    Ray NF, Larsen JW, Stillman RF, Jacobs RF. Economic impact of hospitalization for lower abdominal adhesiolysis in United States in 1988. Surg Gynecol Obstet 1993; 176:271–276.PubMedGoogle Scholar
  99. 99.
    Ray NF, Denton WG, Thamer M, et al. Adbominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 1998; 186:1–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Ivarsson ML, Holmdahl L, Franzjen G, Reisbert B. Cost of bowel obstruction resulting from adhesions. Eur J Surg 1997; 163:679–684.PubMedGoogle Scholar
  101. 101.
    McGuire A. The economic impact of post-operative adhesions. Clinical and epidemiological perspectives on post-operative adhesions. Abstract presented at the annual scientific meeting of the Association of Surgeons Great Britain and Ireland, 13–15 May, Edinburgh Scotland, 1998.Google Scholar
  102. 102.
    Sigel B, Golub M, Loiacono LA, et al. Technique of ultrasonic detection and mapping of abdominal wall adhesions. Surg Endosc 1991; 5:161–165.PubMedCrossRefGoogle Scholar
  103. 103.
    Kodama I, Loiacono LA, Sigel B, et al. Ultrasonic detection of viscera slide as an indicator of abdominal wall adhesion. J Clin Ultrasound 1992; 20:375–801.PubMedCrossRefGoogle Scholar
  104. 104.
    Lamont PM, Menziers D, Ellis H. Intra-abdominal adhesion formation between two adjacent deperitonealised surfaces. Surg Res Commun 1992; 13:127–130.Google Scholar
  105. 105.
    Haney AF, Doty E. The formation of coalescing peritoneal adhesions requires injury to both contacting peritoneal surfaces. Fertil Steril 1994; 61:767–775.PubMedGoogle Scholar
  106. 106.
    Kligman I, Drachenberg C, Papadimitriou J, et al. Im-munohistochemical demonstration of nerve fiber in pelvic adhesions. Obstet Gynecol 1993; 82:566–568.PubMedGoogle Scholar
  107. 107.
    Tulandi T, Chen MF, Sundus A, et al. A study of nerve fibers and histopathology of postsurgical, postinfectious, and endometriosis-related adhesions. Obstet Gynecol 1998; 92:766–768.PubMedCrossRefGoogle Scholar
  108. 108.
    Milligan DW, Raftery AT. Observations on the pathogene-sis of peritoneal adhesions: a light and electron microscopical study. Br J Surg 1974; 61:270–280.CrossRefGoogle Scholar
  109. 109.
    Harris ES, Morgan RF, Rodeheaver GT. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery (St.Louis) 1995; 117:663–669.CrossRefGoogle Scholar
  110. 110.
    Abe H, Rodgers KE, Campeau JD, et al. The effect of intraperitoneal administration of sodium tolmetin-hyaluronic acid on the postsurgical cell infiltration in vivo. J Surg Res 1990; 49:322–327.PubMedCrossRefGoogle Scholar
  111. 111.
    Ramos BF, Qureshi R, Olsen KE, Jakschik BA. The importance of mast cells for the neutrophil influx in immune complex-induced peritonitis in mice. J Immunol 1990; 145:1868–1873.PubMedGoogle Scholar
  112. 112.
    Qureshi R, Jakschik BA. The role of mast cells in thiogly-collate-induced inflammation. J Immunol 1988; 141:2090–2096.PubMedGoogle Scholar
  113. 113.
    Collins SM, Marzio L, Vermillion DL, Blennerhassett P, Chiverton S. The immunomodulation of gut motility: factors that determine the proliferation of mast cells in the sensitized gut. Gastroenterology 1988; 94:A74.Google Scholar
  114. 114.
    Moriwaki K, Jujii K, Yuge O. Protein exudation induced by manipulation of the intestines and mesentery during laparotomy in rat: a study of the mechanism of ‘third spacezzz’ loss. In Vivo 1997; 11:325–327.PubMedGoogle Scholar
  115. 115.
    Liebman SM, Langer JC, Marshall JS, et al. Role of mast cells in peritoneal adhesion formation. Am J Surg 1993; 165:127–130.PubMedCrossRefGoogle Scholar
  116. 116.
    Ellis H. The cause and prevention of postoperative in-traperitoneal adhesions. Surg Gynecol 1971; 133:497–511.Google Scholar
  117. 117.
    Ellis H. Prevention and treatment of adhesions. Infect Surg 1983; 11:803–807.Google Scholar
  118. 118.
    Buckman RF, Buckman PD, Hufnagel HV, et al. A physiologic basis for the adhesion-free healing of depertoneal-ized surfaces. J Surg Res 1976; 21:67–76.PubMedCrossRefGoogle Scholar
  119. 119.
    Bridges JB, Johnson FR, Whitting HW. Peritoneal adhesion formation. Acta Anat (Basel) 1965; 261:203–212.CrossRefGoogle Scholar
  120. 120.
    Richardson EH. Studies on peritoneal adhesions: with a contribution to the treatment of denuded surfaces. Am Surg 1911; 54:758–797.Google Scholar
  121. 121.
    Holmdahl L, Risberg B. Surgical glove powder: an overlooked risk. Severe adverse effects are well-documented. Lakartidningen 1993; 90:2047–2049.Google Scholar
  122. 122.
    Schade DS, Williamson JR. The pathogenesis of peritoneal adhesions: an ultrastructural study. Ann Surg 1968; 167:500–510.PubMedCrossRefGoogle Scholar
  123. 123.
    Turunen AOL Ueber die postoperativen verwachs ungen und deren Verhutung speziell im anschluss an gynakologische laparotomien. Duodecim Ser B 1933; 18:1–9.Google Scholar
  124. 124.
    Pittaway DE, Daniell JF, Maxson WS. Ovarian surgery in an infertility patient as an indication for short-interval second-look laparoscopy: a preliminary study. Fertil Steril 1985; 44:611–614.PubMedGoogle Scholar
  125. 125.
    Jackson BB. Observations on intraperitoneal adhesions, an experimental study. Surgery (St. Louis) 1958; 44:507–518.Google Scholar
  126. 126.
    Bronson RA, Wallach EE. Lysis of periadnexal adhesions for correction of infertility. Fertil Steril 1977; 28:613–619.PubMedGoogle Scholar
  127. 127.
    Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: a study of the mechanisms. Am J Pathol 1971; 65:117–148.PubMedGoogle Scholar
  128. 128.
    Golan A, Winston RML. Blood and intraperitoneal adhesion formation in the rat. J Obstet Gynaecol 1989; 9:248–252.CrossRefGoogle Scholar
  129. 129.
    Thompson JN, Scott-Coombes DM, Whawell SA. Peritoneal fibrinolysis and adhesion formation. In: di Zerega GS, ed. Pelvic Surgery. New York: Springer-Verlag, 1997.Google Scholar
  130. 130.
    Holmdahl L, Eriksson E, Eriksson B, Risberg B. Depression of peritoneal fibrinolysis during operation is a local response to trauma. Surgery (St. Louis) 1998; 123:539–544.CrossRefGoogle Scholar
  131. 131.
    Whawell SA, Scott-Coombes DM, Vipond MN, Tebbutt SJ, Thompson JN. Tumor necrosis factor mediated release of plasminogen activator inhibitor-1 by human peritoneal mesothelia cells. Br J Surg 1994: 81:214–216.PubMedCrossRefGoogle Scholar
  132. 132.
    Scott-Coombes DM, Whawell SA, Vipond MN, Thompson JN. The human intraperitoneal fibrinolytic response to elective surgery. Br J Surg 1995; 160:471–477.Google Scholar
  133. 133.
    Bordes WA, Noble NA. Transforming growth factor ß in tissue fibrosis. N Engl J Med 1994; 331:1286–1292.CrossRefGoogle Scholar
  134. 134.
    Williams RS. Rossi AM, Chegini N, et al. Effect of transforming growth factor-ß on postoperative adhesion formation and intact peritoneum. J Surg Res 1992; 51:65–70.CrossRefGoogle Scholar
  135. 135.
    McDonald MN, Elkins TE, Wortham GF, et al. Adhesion formation and prevention after peritoneal injury and repair in the rabbit. J Reprod Med 1988; 33:436–439.PubMedGoogle Scholar
  136. 136.
    Tulandi T. Adhesion formation after reproductive surgery with and without the carbon dioxide laser. Fertil Steril 1987; 47:704–706.PubMedGoogle Scholar
  137. 137.
    Ellis H, Heddle R. Does the peritoneum need to be closed at laparotomy? Br J Surg 1977; 64:733–736.PubMedCrossRefGoogle Scholar
  138. 138.
    Milewczyk M. Experimental studies on the development of peritoneal adhesions in cases of suturing and nonsu-turing of the parietal peritoneum in rabbits. Ginekol Pol 1989; 60:1–6.PubMedGoogle Scholar
  139. 139.
    Swanwick RA, Stockdale PH, Milne FJ. Healing of parietal peritoneum in the horse. Br Vet J 1963; 129:29–35.Google Scholar
  140. 140.
    Hugh TB, Nankivel C, Meagher AP, et al. Is closure of the peritoneal layer necessary in the repair of midline surgical abdominal wounds? World J Surg 1990; 14:231–234.PubMedCrossRefGoogle Scholar
  141. 141.
    Ling FW, Stovall TG, Meyer NL, et al. Adhesion formation associated with the use of absorbable staples in comparison to other types of peritoneal injury. IntJ Gynaecol Obstet 1989; 30:361–366.CrossRefGoogle Scholar
  142. 142.
    Luciano AA, Häuser KS, Benda J. Evaluation of commonly used adjuvants in the prevention of postoperative adhesion. Am J Obstet Gynecol 1983; 146:88–92.PubMedGoogle Scholar
  143. 143.
    Connolly JE, Stephens FO. Factors influencing the incidence of intra-peritoneal adhesions: an experimental study. Surgery (St. Louis) 1968; 63:976–979.Google Scholar
  144. 144.
    Trimpi HD, Bacon HE. Clinical and experimental study of denuded surfaces in extensive surgery of the colon and rectum. Am J Surg 1952; 34:596–602.CrossRefGoogle Scholar
  145. 145.
    Ulfelder H, Quinby WC Jr. Small bowel obstruction following combined abdominoperitoneal resection of the rectum. Surgery (St. Louis) 1951; 30:174–177.Google Scholar
  146. 146.
    Glucksman DL. Warren WD. The effect of topically applied corticosteroids in the prevention of peritoneal adhesions: an experimental approach with a review of the literature. Surgery (St. Louis) 1966; 60:352–360.Google Scholar
  147. 147.
    Rhoades JE, Schwegman CW. One-stage combined ab-dominoperineal resection of the rectum (Miles) performed by two surgical teams. Surgery (St. Louis) 1965; 58:600–606.Google Scholar
  148. 148.
    Singelton AOJr, Rowe EB, Moore RM. Failure of reperi-tonealization to prevent abdominal adhesions in the dog. AmJ Surg 1952; 18:789–792.Google Scholar
  149. 149.
    Chester J, Zimmer CH, Hoffman LD. The use of free peritoneal grafts in intestinal anastomosis. Surg Gynecol Ob-stet 1948; 89:605–608.Google Scholar
  150. 150.
    Thomas JW, Rhoads JE. Adhesion resulting from removal of serosa from an area of bowel: failure of oversewing to lower incidence in the rat and the guinea pig. Arch Surg 1950; 61:565–576.PubMedCrossRefGoogle Scholar
  151. 151.
    Hull DB, Varner MW. A randomized study of closure of the peritoneum at cesarean delivery. Obstet Gynecol 1991; 77:818–821.PubMedGoogle Scholar
  152. 152.
    Pietrantoni M, Parsons MT, O’Brien WF, et al. Peritoneal closure or non-closure at cesarean section. Obstet Gynecol 1991; 77:2–6.CrossRefGoogle Scholar
  153. 153.
    Nagele F, Husslein P. Visceral peritonealization after abdominal hysterectomy—a retrospective pilot study. Geburtsh Frauenheilkd 1991; 51:925–928.CrossRefGoogle Scholar
  154. 154.
    Gupta JK, Dinas K, Kahn ELS. To peritonealize or not to peritonealize? A randomized trial at abdominal hysterectomy. Am J Obstet Gynecol 1968; 178:796–800.CrossRefGoogle Scholar
  155. 155.
    Tulandi T, Falcone T, Kafka I. Second-look operative lapa-roscopy 1 year following reproductive surgery. Fertil Steril 1989; 52:421–424.PubMedGoogle Scholar
  156. 156.
    Gilbert JM, Ellis H, Foweraker S. Peritoneal closure after lateral paramedian incision. Br J Surg 1987; 74:113–115.PubMedCrossRefGoogle Scholar
  157. 157.
    Vipond MN, Whawell SA, Thompson JN, et al. Peritoneal fibrinolytic activity and intra-abdominal adhesions. Lancet 1990; 335:1120–1122.PubMedCrossRefGoogle Scholar
  158. 158.
    O’Leary D, Coakley JB. The influence of suturing and sepsis on the development of postoperative peritoneal adhesions. Ann R Coll Surg Engl 1992; 74:134–137.PubMedGoogle Scholar
  159. 159.
    Brill AI, Farr MD, Nezhat MD, et al. The incidence of adhesions after prior laparotomy: a laparoscopic appraisal. Obstet Gynecol 1995; 85:269–272.PubMedCrossRefGoogle Scholar
  160. 160.
    Levrant SG, Bieber EJ, Barnes RB. Anterior abdominal wall adhesions after laparotomy or laparoscopy. J Am As-soc Gynecol Laparosc 1997; 4:353–356.CrossRefGoogle Scholar
  161. 161.
    Bakkum EA, Trimbor-Kemper GCM. Natural course of postsurgical adhesions. Microsurgery 1995; 16:650–654.PubMedCrossRefGoogle Scholar
  162. 162.
    DeCherney AH, Laufer N. The use of a new synthetic ab-sorbable monofilament suture, polydioxanone (PDS) for surgery. Fertil Steril 1983; 39:401–405.Google Scholar
  163. 163.
    Mencke H, Schünke M, Schultz S, Semm K. Incidence of adhesions following thermal tissue damage. Res Exp Med 1991; 191:405–412.CrossRefGoogle Scholar
  164. 164.
    Diamond MP, Daniell JF, Martin DC, et al. Tubal patency and pelvic adhesions at early second-look laparoscopy following intraabdominal use of the carbon dioxide laser: initial report of the intraabdominal laser study group. Fertil Steril 1984; 42:717–723.PubMedGoogle Scholar
  165. 165.
    Filmar S, Gomel V, McComb P. The effectiveness of CO2 laser and electromicrosurgery in adhesiolysis: a comparative study. Fertil Steril 1986; 45:407–411.PubMedGoogle Scholar
  166. 166.
    Luciano AA, Maier DB, Kock El, et al. A comparative study of postoperative adhesions following laser surgery by laparoscopy in the rabbit model. Obstet Gynecol 1989; 74:220–224.PubMedGoogle Scholar
  167. 167.
    Sahakian V, Rogers R, Halme J, et al. Effects of carbon dioxide-saturated normal saline and Ringer’s lactate on postsurgical adhesion formation in the rabbit. Obstet Gynecol 1993; 82:851–853.PubMedGoogle Scholar
  168. 168.
    Ott DE. Pollutants resulting from intraabdominal tissue combustion. In: di Zerega GS, ed. Pelvic Surgery. New York: Springer-Verlag, 1997:251–252 (abstract 11).Google Scholar
  169. 169.
    Tulandi T, Chan KL, Arseneau J. Histopathological and adhesion formation after incision using ultrasonic vibrating scalpel and regular scalpel in the rat. Fertil Steril 1994; 61:548–550.PubMedGoogle Scholar
  170. 170.
    Operative Laparoscopy Study Group. Postoperative adhesion development after operative laparoscopy: evaluation at early second-look procedures. Fertil Steril 1991; 44:700–704.Google Scholar
  171. 171.
    Daniell JF, Pittaway DE, Maxson WE. The role of laparoscopic adhesion lysis in an in vitro fertilization program. Fertil Steril 1983; 40:49–52.PubMedGoogle Scholar
  172. 172.
    Diamond MP, Daniell JF, Martin DC, et al. Tubal patency and pelvic adhesions at early second-look laparoscopy following intraabdominal use of the carbon dioxide laser: initial report of the intraabdominal laser study group. Fertil Steril 1984; 42:717–723.PubMedGoogle Scholar
  173. 173.
    Daniell JF, Pittaway DE. Short interval second-look laparoscopy after infertility surgery: a preliminary report. J Reprod Med 1983; 28:281–283.PubMedGoogle Scholar
  174. 174.
    Raj SG, Hulka JF. Second-look laparoscopy in infertility surgery; therapeutic and prognostic value. Fertil Steril 1982; 38:325.PubMedGoogle Scholar
  175. 175.
    Surrey MW, Friedman S. Second-look laparoscopy after reconstructive pelvic surgery for infertility. J Reprod Med 1982; 27:658–660.PubMedCrossRefGoogle Scholar
  176. 176.
    McLaughlin DS. Evaluation of adhesion reformation by early second-look laparoscopy following microlaser ovarian wedge resection. Fertil Steril 1984; 42:531–537.PubMedGoogle Scholar
  177. 177.
    DeCherney AH, Mezer HC. The nature of posttuboplasty pelvic adhesions as determined by early and late laparoscopy. Fertil Steril 1984; 41:643–646.Google Scholar
  178. 178.
    Trimbos-Kemper TCM, Trimbos JB, van Hall EV. Adhesion formation after tubal surgery: results of the eighth-day laparoscopy in 188 patients. Fertil Steril 1985; 43:395–398.PubMedGoogle Scholar
  179. 179.
    Jansen RP. Early laparoscopy after pelvic operations to prevent adhesions: safety and efficacy. Fertil Steril 1988; 49:26–31.PubMedGoogle Scholar
  180. 180.
    Serour GI, Badraoui MH, el Agizi HM, et al. Laparoscopic adhesiolysis for infertile patients with pelvic adhesive disease. Int J Gynaecol Obstet 1989; 30:249–252.PubMedCrossRefGoogle Scholar
  181. 181.
    Mencke H, Semm K, Freys I, et al. Incidence of adhesions in the true pelvis after pelviscopic operative treatment of tubal pregnancy. Gynecol Obstet Invest 1989; 28:202–204.CrossRefGoogle Scholar
  182. 182.
    Steege JF. Repeated clinic laparoscopy for the treatment of pelvic adhesions: a pilot study. Obstet Gynecol 1994; 83:276–279.PubMedGoogle Scholar
  183. 183.
    Wright JA, Sharpe-Timms KL. Gonadotropin-releasing hormone agonist therapy reduces postoperative adhesion formation and reformation after adhesiolysis in rat models for adhesion formation and endometriosis. Fertil Steril 1995; 63:1094–1100.PubMedGoogle Scholar
  184. 184.
    Smith SK. Vascular endothelial growth factor and the en-dometrium. Hum Reprod (Oxf) 1996; 11:56–61.CrossRefGoogle Scholar
  185. 185.
    Grow DR, Coddington CC, Hsiu JG, Mikich Y, Gidgeb GD. Role of hypoestrogenism or sex steroid antagonism in adhesion formation after myometrial surgery in primates. Fertil Steril 1996; 66:140–147.PubMedGoogle Scholar
  186. 186.
    Murphy LJ, Ghahary A. Uterine insulin-like growth factor. I: Regulation of expression and its role in estrogen induced uterine proliferation. Endocr Rev 1990; 11:443–453.Google Scholar
  187. 187.
    Iwamoto I, Imada A. Effects of growth factors on proliferation of cultured mesothelial cells. Nippon Jinzo Gakkai Shi 1992; 34:1201–1208.PubMedGoogle Scholar
  188. 188.
    Montanino-Oliva D, Metzerga DA, Luciano AA. Use of medroxyprogesterone acetate in the prevention of postoperative adhesions. Fertil Steril 1996; 65:650–654.PubMedGoogle Scholar
  189. 189.
    Rodgers KE, Ellefson DD, Girgis W, et al. Modulation of postsurgical cell infiltration and fibrinolytic activity by tolmetin in two species. J Surg Res 1994; 56:314–325.PubMedCrossRefGoogle Scholar
  190. 190.
    Chegini N, Simms J, Williams S, Materson BJ. Identification of epidermal growth factor, transforming growth fac-tor-a, and epidermal growth factor receptor in surgically induced pelvic adhesions in the rat and intraperitoneal adhesions in the human. Am J Obstet Gynecol 1994; 17:321–328.Google Scholar
  191. 191.
    Hill JA, Muldoon TG, Gallup DG, Turner WA, Loy RA, Talledor OE. Cytosol estrogen receptor content of female parietal peritoneum. Am J Obstet Gynecol 1986; 154:943–944.PubMedGoogle Scholar
  192. 192.
    Prentice A, Randall BJ, McGill A, et al. Ovarian steroid receptor expression in endometriosis and in two potential parent epithelia: endometrium and peritoneal mesothe-lium. Hum Reprod (Oxf) 1992; 7:1318–1325.Google Scholar
  193. 193.
    Nakayama K, Masuzawa H, Ki SF, et al. Imunohistochemi-cal analysis of the peritoneum adacent to endometriotic lesions using antibodies for Ber-EP4 antigen, estrogen receptors, and progesterone receptors: implication of peritoneal metaplasia in the pathogenesis of endometriosis. Int J Gynecol Pathol 1994; 4:348–358.CrossRefGoogle Scholar
  194. 194.
    Metzger DA, Breault DT, Chaffkin L, et al. The role of estrogen in adhesion reformation. Soc Gynecol Invest 1993; 292:347 (abstract).Google Scholar
  195. 195.
    Lamorte A, Gutmann JN, Carcangiu ML, et al. The role of estrogen in adhesion formation. Soc Gynecol Invest 1993; 292:238 (abstract).Google Scholar
  196. 196.
    Grow DR, Seltman HJ, Coddington CC, Hodgen GD. The reduction of postoperative adhesions by two different barrier methods versus control in cynomolgus monkeys: a prospective, randomized, crossover study. Fertil Steril 1994; 61:1141–1146.PubMedGoogle Scholar
  197. 197.
    Diamond MP, Seprafim Adhesion Group. Reduction of adhesions after uterine myomectomy by Seprafilm® membrane (HAL-F®): a blinded, prospective, ramdom-ized, multicenter clinical study. Fertil Steril 1996; 66:904–910.PubMedGoogle Scholar
  198. 198.
    Blauer KL, Collins RL. The effect of intraperitoneal progesterone on postoperative adhesion formation in rabbits. Fertil Steril 1988; 49:144–149.PubMedGoogle Scholar
  199. 199.
    Gillett WR. Artefactual loss of human ovarian surface epithelium: potential clinical significance. Reprod Fertil Dev 1991; 3:93–98.PubMedCrossRefGoogle Scholar
  200. 200.
    Merlo G, Fausone G, Barbero C, et al. Fibrinolytic activity of the human peritoneum. Eur Surg Res 1980; 88:623–630.Google Scholar
  201. 201.
    Wallach EE, Manara LR, Eisenberg E. Experience with 143 cases of tubal surgery. Fertil Steril 1983; 39:609–617.PubMedGoogle Scholar
  202. 202.
    Young PE, Egan JE, Barlow JJ, et al. Reconstructive surgery for infertility at the Boston Hospital for Women. Am J Obstet Gynecol 1970; 108:1092–1097.PubMedGoogle Scholar
  203. 203.
    Frantzen C, Schlosser HW. Microsurgery and postinfec-tious tubal infertility. Fertil Steril 1982; 38:397–420.PubMedGoogle Scholar
  204. 204.
    Diamond E. Lysis of postoperative pelvic adhesions in infertility. Fertil Steril 1979; 31:287–295.PubMedGoogle Scholar
  205. 205.
    Luber K, Beeson CC, Kennedy JF, et al. Results of micro-surgical treatment of tubal infertility and early second-look laparoscopy in the post-pelvic inflammatory disease patient: implication for in vitro fertilization. Am J Obstet Gynecol 1986; 154:1264–1270.PubMedGoogle Scholar
  206. 206.
    Hulka JF. Adnexal adhesions: a prognostic staging and classification system based on a five-year survey of fertility surgery results at Chapel Hill, North Carolina. Am J Ob-stet Gynecol 1982; 144:141–148.Google Scholar
  207. 207.
    Gomel V. Microsurgery in Female Infertility. 1st Ed. Boston: Little, Brow 1983:225–244.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gere S. DiZerega

There are no affiliations available

Personalised recommendations