Effects of Submerged Aquatic Macrophytes on Nutrient Dynamics, Sedimentation, and Resuspension

  • John W. Barko
  • William F. James
Part of the Ecological Studies book series (ECOLSTUD, volume 131)


Accelerated eutrophication due to excessive nutrient (particularly P) loadings has led to great interest in the role of submerged macrophytes in the nutritional economy of freshwater aquatic systems. Submerged macrophytes are unique among rooted aquatic vegetation because they link the sediment with overlying water. This linkage is responsible for great complexities in nutrition and has important implications for nutrient cycling. Despite increased attention to vegetated shallow water systems within the past 20 years, no consensus exists on whether submerged macrophytes function as sources or sinks for particular nutrients. As a result, it has been necessary to evaluate quantitatively nutrient source-sink relationships, involving both soluble and particulate nutrient fractions.


Accretion Rate Submerged Macrophyte Accretion Process Tuning Mechanism Diffusion Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agami, M.; Waisel, Y. The ecophysiology of roots of submerged vascular plants. Physiol. Veg. 24: 607–624; 1986.Google Scholar
  2. Andersen, J.M. Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411–419; 1975.Google Scholar
  3. Anderson, M.R.; Kalff, J. Nutrient limitation of Myriophyllum spicatum growth in situ. Freshwat. Biol. 16: 735–743; 1986.CrossRefGoogle Scholar
  4. Anderson, N.J. Spatial pattern of recent sediment and diatom accumulation in a small monomictic, eutrophic lake. J. Paleolimnol. 3: 143–168; 1990.CrossRefGoogle Scholar
  5. Barko, J.W. Influence of potassium source (sediment vs. open water) and sediment composition on the growth and nutrition of a submersed freshwater macrophyte (Hydrilla verticillata (L.f.) Royle). Aquat. Bot. 12: 157–172; 1982.CrossRefGoogle Scholar
  6. Barko, J.W.; Smart, R.M. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238; 1980.CrossRefGoogle Scholar
  7. Barko, J.W.; Smart, R.M. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340; 1986.CrossRefGoogle Scholar
  8. Barko, J.W.; Adams, M.S.; Clesceri, N.L. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J. Aquat. Plant Manage. 24: 1–10; 1986.Google Scholar
  9. Barko, J.W.; Smart, R.M.; McFarland, D.G.; Chen, R.L. Interrelationships between the growth of Hydrilla verticillata (L.f.) Royle and sediment nutrient availability. Aquat. Bot. 32: 205–216; 1988.CrossRefGoogle Scholar
  10. Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41:41–65; 1991.CrossRefGoogle Scholar
  11. Boers, P.C.M. The Influence of pH on phosphate release from lake sediments. Wat. Res. 25: 309–311; 1991.CrossRefGoogle Scholar
  12. BostrÖm, B.; Jansson, M.; Forsberg, C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59; 1982.Google Scholar
  13. Carignan, R. Nutrient dynamics in a littoral sediment colonized by the submersed macrophyte Myriophyllum spicatum. Can. J. Fish. Aquat. Sci. 42: 1303–1311; 1985.CrossRefGoogle Scholar
  14. Carignan, R.; Kalff, J. Phosphorus sources for aquatic weeds: water or sediment. Science 207: 987–989; 1980.PubMedCrossRefGoogle Scholar
  15. Carpenter, S.R. Enrichment of Lake Wingra, Wisconsin, by submersed macrophyte decay. Ecology 61: 1145–1155; 1980.CrossRefGoogle Scholar
  16. Carpenter, S.R. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–383; 1981.CrossRefGoogle Scholar
  17. Carper, G.L.; Bachmann, R.W. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sci. 41: 1763–1767; 1984.CrossRefGoogle Scholar
  18. Carter, V.; Barko, J.W.; Godshalk, G.L.; Rybicki, N.B. Effects of submersed macrophytes on water quality in the Tidal Potomac River, Maryland. J. Freshwat. Ecol. 4: 493–501; 1988.CrossRefGoogle Scholar
  19. Chen, R.L.; Barko, J.W. Effects of freshwater macrophytes on sediment chemistry. J. Freshwat. Ecol. 4: 279–289; 1988.CrossRefGoogle Scholar
  20. Christiansen, R.; Skøvmand Friis, N.J.; Sondergaard, M. Leaf production and nitrogen and phosphorus tissue content of Littorella uniflora (L.) Aschers in relation to nitrogen and phosphorus enrichment of the sediment in oligotrophic Lake Hampen, Denmark. Aquat. Bot. 23: 1–11; 1985.CrossRefGoogle Scholar
  21. Davis, M.B. Pollen grains in lake sediments: redeposition caused by seasonal water circulation. Science 162: 796–799; 1968.PubMedCrossRefGoogle Scholar
  22. Davis, M.B. Redeposition of pollen grains in lake sediment. Limnol. Oceanogr. 18: 44–52; 1973.CrossRefGoogle Scholar
  23. Davis, M.B.; Brubaker, L.B. Differential sedimentation of pollen grains in lakes. Limnol. Oceanogr. 18: 635–646; 1973.CrossRefGoogle Scholar
  24. Davis, M.B.; Moeller, R.E.; Ford, J. Sediment focusing and pollen influx. In: Haworth, E.Y.; Lund, J.W., eds. Lake sediment and environmental history. Leicester, England: Leicester University; 1984.Google Scholar
  25. Denny, P. Solute movement in submerged angiosperms. Biol. Rev. 55: 65–92; 1980.CrossRefGoogle Scholar
  26. Dieter, C.D. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467–473; 1990.CrossRefGoogle Scholar
  27. Dillon, P.J.; Evans, R.D.; Molot, L.A. Retention and resuspension of phosphorus, nitrogen, and iron in a central Ontario lake. Can. J. Fish. Aquat. Sci. 47: 1269–1274; 1990.CrossRefGoogle Scholar
  28. Drake, J.C.; Heaney, S.I. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol., 17: 513–523; 1987.CrossRefGoogle Scholar
  29. Duarte, C.M.; Kalff, J. Littoral slope as a predictor of maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 31: 1072–1080; 1986.CrossRefGoogle Scholar
  30. Eckman, J.E.; Duggins, D.O.; Sewell, A.T. Ecology of understory kelp beds. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Biol. Ecol. 129:173–187; 1989.CrossRefGoogle Scholar
  31. Evans, R.D.; Rigler, F.H. Measurement of whole lake sediment accumulation and phosphorus retention using lead-210 dating. Can. J. Fish. Aquat. Sci. 37: 817–822; 1980.CrossRefGoogle Scholar
  32. Evans, R.D.; Rigler, R.H. A test of lead-210 dating for measurement of whole lake soft sediment accumulation. Can. J. Fish. Aquat. Sci. 40: 506–515; 1983.CrossRefGoogle Scholar
  33. Fonseca, M.S.; Fisher, J.S.; Zieman, J.C.; Thayer, G.W. Influence of the sea grass, Zostera marina L., on current flow. Est. Coast. Shelf Sci. 15:351–364; 1982.CrossRefGoogle Scholar
  34. Gregg, W.W.; Rose, F.L. The effects of aquatic macrophytes on the stream microenviron-ment. Aquat. Bot. 14: 309–324; 1982.CrossRefGoogle Scholar
  35. Håkanson, L. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412; 1977.CrossRefGoogle Scholar
  36. Hanson, M.A.; Butler, M.G. Responses of plankton, turbidity, and macrophytes to bio-manipulation in a shallow prairie lake. Can. J. Fish. Aquat. Sci. 51: 1180–1188; 1994.CrossRefGoogle Scholar
  37. Hellström, T. The effect of resuspension on algal production in a shallow lake. Hydro-biologia 213: 183–190; 1991.CrossRefGoogle Scholar
  38. Hilton, J. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143; 1985.CrossRefGoogle Scholar
  39. Hilton, J.; Lishman, J.P.; Allen P.V. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133; 1986.CrossRefGoogle Scholar
  40. Hosper, S.H. Biomanipulation, new perspectives for restoration of shallow, eutrophic lakes in The Netherlands. Hydrobiol. Bull. 23: 5–10; 1989.CrossRefGoogle Scholar
  41. Hosper, S.H.; Jagtman, E. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534; 1990.CrossRefGoogle Scholar
  42. Howard-Williams, C. Studies on the ability of a Potamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. Appl. Ecol. 18: 619–637; 1981.CrossRefGoogle Scholar
  43. Huebert, D.B.; Gorham, P.R. Biphasic mineral nutrition of the submersed aquatic macrophyte Potamogeton pectinatus L. Aquat. Bot. 16: 269–284; 1983.CrossRefGoogle Scholar
  44. Imberger, J.; Parker, G. Mixed layer dynamics in a lake exposed to a spatially variable wind field. Limnol. Oceanogr. 30: 473–488; 1985.CrossRefGoogle Scholar
  45. Imberger, J.; Patterson, J.C. Physical limnology. Adv. Appl. Mech. 27: 303–475; 1990.CrossRefGoogle Scholar
  46. Jackson, L.J.; Rowen, D.J.; Cornett, R.J.; Kalff, J. Myriophyllum spicatum pumps essential and nonessential trace elements from sediment to epiphytes. Can. J. Fish. Aquat. Sci. 51: 1769–1773; 1994a.CrossRefGoogle Scholar
  47. Jackson, L.J.; Rasmussen, J.B.; Kalff, J. A mass-balance analysis of trace metals in two weedbeds. Wat. Air Soil Pollut. 75: 107–119; 1994b.CrossRefGoogle Scholar
  48. James, W.F.; Barko, J.W. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 120: 129–142; 1990.Google Scholar
  49. James, W.F.; Barko, J.W. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. 36: 179–187; 1991a.CrossRefGoogle Scholar
  50. James, W.F.; Barko, J.W. Littoral-pelagic phosphorus dynamics during nighttime convec-tive circulation. Limnol. Oceanogr. 36: 949–960; 1991b.CrossRefGoogle Scholar
  51. James, W.F.; Barko, J.W. Analysis of summer phosphorus fluxes within the pelagic zone of Eau Galle Reservoir, Wisconsin. Lake Reserv. Manage. 8:61–71; 1993.CrossRefGoogle Scholar
  52. James, W.F.; Barko, J.W. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake Reserv. Manage. 10:95–102; 1994.CrossRefGoogle Scholar
  53. James, W.F.; Taylor, W.D.; Barko, J.W. Production and vertical migration of Ceratium hirundinella in relation to phosphorus availability in Eau Galle Reservoir, Wisconsin. Can. J. Fish Aquat. Sci. 49: 694–700; 1992.CrossRefGoogle Scholar
  54. James, W.F.; Barko, J.W.; Eakin, H.L. Convective water exchange during differential heating and cooling: implications for dissolved constituent transport. Hydrobiologia. 294: 167–176; 1994.CrossRefGoogle Scholar
  55. James, W.F.; Smith, C.S.; Barko, J.W.; Field, S.J. Direct and indirect influences of aquatic macrophyte communities on phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Technical Report W-95-2. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS; 1995.Google Scholar
  56. James, W.F.; Barko, J.W.; Field, S.J. Phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Arch. Hydrobiol. 138: 245–257; 1996.Google Scholar
  57. Jensen, H.S.; Kristensen, P.; Jeppesen, E.; Skytte, A. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediment in shallow lakes. Hydrobiologia 235: 731–743; 1992.CrossRefGoogle Scholar
  58. Landers, D.H. Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnol. Oceanogr. 27: 428–439; 1982.CrossRefGoogle Scholar
  59. Lijklema, L. Interaction of orthophosphate with iron (III) and aluminum hydroxides. Environ. Sci. Tech. 5: 537–541; 1977.Google Scholar
  60. Likens, G.E.; Davis, M.B. Post-glacial history of Mirror Lake and its watershed in New Hampshire USA: an initial report. Verh. Int. Verein. Theor. Angew. Limnol. 19:982–993; 1975.Google Scholar
  61. Lowenhaupt, B. The transport of calcium and other cations in submerged aquatic plants. Biol. Rev. 31: 371–395; 1956.CrossRefGoogle Scholar
  62. Maceina, M.J.; Soballe, D.M. Wind-related limnological variation in Lake Okeechobee, FL. Lake Reserv. Manage. 6: 93–100; 1990.CrossRefGoogle Scholar
  63. Madsen, T.V.; Warncke, E. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol. 97: 389–394; 1983.Google Scholar
  64. Moeller, R.E.; Wetzel, R.G. Littoral vs profundal components of sediment accumulation: contrasting roles as phosphorus sinks. Verh. Int. Verein. Theor. Angew. Limnol. 23:386–393; 1988.Google Scholar
  65. Monismith, S.; Imberger, J.; Morison, M. Convective motions in the sidearm of a small reservoir. Limnol. Oceanogr. 35: 1676–1702; 1990.CrossRefGoogle Scholar
  66. Mortimer, C.H. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329; 1941.CrossRefGoogle Scholar
  67. Patterson, K.J.; Brown, J.M.A. Growth and elemental composition of Lagarosiphon major in response to water and substrate nutrients. Prog. Water Techn. 2: 231–246; 1979.Google Scholar
  68. Petticrew, E.L.; Kalff, J. Predictions of surficial sediment composition in the littoral zone of lakes. Limnol. Oceanogr. 36: 384–392; 1991.CrossRefGoogle Scholar
  69. Petticrew, E.L.; Kalff, J. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci. 49: 2483–2489; 1992.CrossRefGoogle Scholar
  70. Prentki, R.T. Depletion of phosphorus from sediment colonized by Myriophyllum spicatum L. In: Breck, J.E.; Prentki, R.T.; Loucks, O.L., eds. Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Madison, WI: Institute for Environmental Studies, University of Wisconsin; 1979: 161–176.Google Scholar
  71. Prentki, R.T.; Adams, M.S.; Carpenter, S.R.; Gasith, A.; Smith, S.C.; Weiler, P.R. The role of submersed weedbeds in internal loading and interception of allochthonous materials in Lake Wingra, Wisconsin, USA. Arch. Hydrobiol. Suppl. 57: 221–250; 1979.Google Scholar
  72. Rogers, S.J.; McFarland, D.G.; Barko, J.W. Evaluation of the growth of Vallisneria amer-icana Michx. in relation to sediment nutrient availability. Lake Reserv. Manage. 11: 57–66; 1995.CrossRefGoogle Scholar
  73. Scheffer, M. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486; 1990.CrossRefGoogle Scholar
  74. Scheffer, M.; Hosper, S.H.; Meir, M-L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279; 1993.PubMedCrossRefGoogle Scholar
  75. Schindler, D.W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–898; 1974.PubMedCrossRefGoogle Scholar
  76. Schindler, D.W. Evolution of phosphorus limitation in lakes. Science 195:260–262; 1977.PubMedCrossRefGoogle Scholar
  77. Sculthrope, C.D. The biology of aquatic vascular plants. London: Edward Arnold; 1967.Google Scholar
  78. Smart, R.M.; Barko, J.W. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot. 21: 251–263; 1985.CrossRefGoogle Scholar
  79. Smart, R.M.; Barko, J.W. Effects of water chemistry on aquatic plants: growth and photosynthesis of Myriophyllum spicatum L. Technical Report A-86-2, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS; 1986.Google Scholar
  80. Smith, C.S.; Adams, M.S. Phosphorus transfer from sediments by Myriophyllum spicatum. Limnol. Oceanogr. 31: 1312–1321; 1986.CrossRefGoogle Scholar
  81. Søndergaard, M.; Kristensen, P.; Jeppesen, E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99; 1992.CrossRefGoogle Scholar
  82. Stefan, H.G.; Horsch, G.M.; Barko, J.W. A model for the estimation of convective exchange in the littoral region of a shallow lake during cooling. Hydrobiologia 174: 225–234; 1989.CrossRefGoogle Scholar
  83. Taylor, W.D.; Barko, J.W.; James, W.F. Contrasting diel patterns of vertical migration in the dinoflagellate Ceratium hirundinella in relation to phosphorus supply in a north temperate reservoir. Can. J. Fish. Aquat. Sci. 45: 1093–1098; 1988.CrossRefGoogle Scholar
  84. Trisal, C.L.; Kaul, S. Sediment composition, mud-water interchanges and the role of macrophytes in Dal Lake, Kashmir. Int. Rev. Ges. Hydrobiol. 68: 671–682; 1983.CrossRefGoogle Scholar
  85. Weiler, P.R. Littoral-pelagic exchange in Lake Wingra, Wisconsin, as determined by a circulation model. Madison, WI: University of Wisconsin, Madison, Inst. Environ. Stud. Rep. 100; 1978.Google Scholar
  86. Wetzel, R.G. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 145–161; 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John W. Barko
  • William F. James

There are no affiliations available

Personalised recommendations